A streamlit component, to make chatbots
Project description
st-chat
Streamlit Component, for a Chat-bot UI, example app
authors - @yashppawar & @YashVardhan-AI
Installation
Install streamlit-chat
with pip
pip install streamlit-chat
usage, import the message
function from streamlit_chat
import streamlit as st
from streamlit_chat import message
message("My message")
message("Hello bot!", is_user=True) # align's the message to the right
Screenshot
Another example for html in chat, and Refresh chat button
import streamlit as st
from streamlit_chat import message
from streamlit.components.v1 import html
def on_input_change():
user_input = st.session_state.user_input
st.session_state.past.append(user_input)
st.session_state.generated.append("The messages from Bot\nWith new line")
def on_btn_click():
del st.session_state.past[:]
del st.session_state.generated[:]
audio_path = "https://docs.google.com/uc?export=open&id=16QSvoLWNxeqco_Wb2JvzaReSAw5ow6Cl"
img_path = "https://www.groundzeroweb.com/wp-content/uploads/2017/05/Funny-Cat-Memes-11.jpg"
youtube_embed = '''
<iframe width="400" height="215" src="https://www.youtube.com/embed/LMQ5Gauy17k" title="YouTube video player" frameborder="0" allow="accelerometer; encrypted-media;"></iframe>
'''
markdown = """
### HTML in markdown is ~quite~ **unsafe**
<blockquote>
However, if you are in a trusted environment (you trust the markdown). You can use allow_html props to enable support for html.
</blockquote>
* Lists
* [ ] todo
* [x] done
Math:
Lift($L$) can be determined by Lift Coefficient ($C_L$) like the following
equation.
$$
L = \\frac{1}{2} \\rho v^2 S C_L
$$
~~~py
import streamlit as st
st.write("Python code block")
~~~
~~~js
console.log("Here is some JavaScript code")
~~~
"""
table_markdown = '''
A Table:
| Feature | Support |
| ----------: | :------------------- |
| CommonMark | 100% |
| GFM | 100% w/ `remark-gfm` |
'''
st.session_state.setdefault(
'past',
['plan text with line break',
'play the song "Dancing Vegetables"',
'show me image of cat',
'and video of it',
'show me some markdown sample',
'table in markdown']
)
st.session_state.setdefault(
'generated',
[{'type': 'normal', 'data': 'Line 1 \n Line 2 \n Line 3'},
{'type': 'normal', 'data': f'<audio controls src="{audio_path}"></audio>'},
{'type': 'normal', 'data': f'<img width="100%" height="200" src="{img_path}"/>'},
{'type': 'normal', 'data': f'{youtube_embed}'},
{'type': 'normal', 'data': f'{markdown}'},
{'type': 'table', 'data': f'{table_markdown}'}]
)
st.title("Chat placeholder")
chat_placeholder = st.empty()
with chat_placeholder.container():
for i in range(len(st.session_state['generated'])):
message(st.session_state['past'][i], is_user=True, key=f"{i}_user")
message(
st.session_state['generated'][i]['data'],
key=f"{i}",
allow_html=True,
is_table=True if st.session_state['generated'][i]['type']=='table' else False
)
st.button("Clear message", on_click=on_btn_click)
with st.container():
st.text_input("User Input:", on_change=on_input_change, key="user_input")
Screenshot
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for streamlit-chat-askgdpr-0.2.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | b09187213172e4da753628346278b95183a8d597ace520bf9fb39dc6cf468cec |
|
MD5 | 31595e693c8c167124c1b8e111c83f33 |
|
BLAKE2b-256 | 0311da6fdce1767b49db5528987c9c0bce266a7615bdb1c6789753174e71b861 |
Close
Hashes for streamlit_chat_askgdpr-0.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 506d912840416a247108ae1de741beeef9c61e62650e8885f26eb3941b024b4b |
|
MD5 | 78336579259f98bec5fafcfe4bb18f8e |
|
BLAKE2b-256 | 68aa69d9a2f56269c327d9bca20f3220d11f475d28e632448fa6f4b5063f7b22 |