Skip to main content

Streamlit component that allows you to create a chat prompt with paste and image attachment support

Project description

Streamlit Chat Prompt

A Streamlit component that provides a modern chat-style prompt with image attachment and paste support. This component was built to mimic the style of streamlit.chat_input while expanding functionality with images. Future work may include addition of speech-to-text input.

License

Author: Tyler House (@tahouse)

Features

  • 📝 Chat-style text input with multi-line support
  • 📎 Image attachment support via button or drag-and-drop
  • 📋 Paste image support (paste images directly from clipboard)
  • 🖼️ Image preview with ability to remove attached images
  • ⌨️ Submit with Enter key (Shift+Enter for new line)
  • 🎨 Automatic theme integration with Streamlit
  • 📱 Responsive design that works well on mobile and desktop
  • 🗜️ Automatic image compression/scaling to stay under size limits (customizable, default 5MB)
  • 📌 Optional pinned-to-bottom placement for main chat interface (one per app)
  • 🔄 Flexible positioning for use in dialogs, sidebars, or anywhere in the app flow
  • ✏️ Support for default/editable content - perfect for message editing workflows
  • 🔤 Smart focus management - automatically returns to text input after interactions

Installation

pip install streamlit-chat-prompt

Usage

import streamlit as st
from streamlit_chat_prompt import prompt

# Create a chat prompt
response = prompt(
    name="chat",  # Unique name for the prompt
    key="chat",   # Unique key for the component instance
    placeholder="Hi there! What should we talk about?",  # Optional placeholder text
    main_bottom=True,  # Pin prompt to bottom of main area
    max_image_size=5 * 1024 * 1024,  # Maximum image size (5MB default)
    disabled=False,  # Optionally disable the prompt
)

# Handle the response
if response:
    if response.message:
        st.write(f"Message: {response.message}")
    
    if response.images:
        for i, img in enumerate(response.images):
            st.write(f"Image {i+1}: {img.type} ({img.format})")

Examples

Here are some usage patterns, or check out rocktalk for a full working example.

  1. Main Chat Interface Main Chat Interface

    import streamlit as st
    from streamlit_chat_prompt import prompt
    
    with st.sidebar:
        st.markdown("test")
        prompt_return = prompt(name="foo", key="better_chat_prompt", placeholder="Hi there!", main_bottom=True)
    
    st.write("Message:", prompt_return)
    if prompt_return:
        prompt_return.message
        prompt_return.images
    
  2. Dialog Usage and Starting From Existing Message Dialog Interface

    import streamlit as st
    from streamlit_chat_prompt import prompt
    
    @st.dialog("test dialog")
    def test_dg(default_input="foobar"):
        prompt(
            "edit prompt",
            key=f"edit_prompt_{id(self)}",
            placeholder="Editing existing input",
            main_bottom=False,
            default=default_input,
        )
    
        if st.button("✎", key=f"edit_{id(self)}"):
            test_dg()
    

Component API

prompt()

Main function to create a chat prompt.

Parameters:

  • name (str): Unique name for this prompt instance
  • key (str): Unique key for the component instance
  • placeholder (str, optional): Placeholder text shown in input field
  • default (Union[str, PromptReturn], optional): Default value for the prompt. Can include text and images using the PromptReturn object type.
  • main_bottom (bool, optional): Pin prompt to bottom of main area (default: True)
  • max_image_size (int, optional): Maximum image size in bytes (default: 5MB)
  • disabled (bool, optional): Disable the prompt (default: False)

Returns:

Optional[PromptReturn]: Object containing message and images if submitted, None otherwise

PromptReturn

Object returned when user submits the prompt.

Properties:

  • message (Optional[str]): Text message entered by user
  • images (Optional[List[ImageData]]): List of attached images

ImageData

Object representing an attached image.

Properties:

  • type (str): Image MIME type (e.g. "image/jpeg")
  • format (str): Image format (e.g. "base64")
  • data (str): Image data as base64 string

Development

This repository is based on the Streamlit Component template system. If you want to modify or develop the component:

  1. Clone the repository

  2. Install development dependencies:

    pip install -e ".[devel]"
    
  3. Start the frontend development server:

    cd streamlit_chat_prompt/frontend
    npm install
    npm run start
    
  4. In a separate terminal, run your Streamlit app:

    streamlit run your_app.py
    

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit_chat_prompt-0.1.0.tar.gz (730.6 kB view details)

Uploaded Source

Built Distribution

streamlit_chat_prompt-0.1.0-py3-none-any.whl (734.9 kB view details)

Uploaded Python 3

File details

Details for the file streamlit_chat_prompt-0.1.0.tar.gz.

File metadata

  • Download URL: streamlit_chat_prompt-0.1.0.tar.gz
  • Upload date:
  • Size: 730.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.10

File hashes

Hashes for streamlit_chat_prompt-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d36a33d222d121c6de2c9429a7c267f5729431abcd70ab1b2e7d1d8a1d9b3634
MD5 2a75d33563878f937527b9178aab2f4f
BLAKE2b-256 f0e39635ac5c467f136ee84b3bd1b5a0dae92781b625eea46813c98a37e5c41e

See more details on using hashes here.

File details

Details for the file streamlit_chat_prompt-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for streamlit_chat_prompt-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 70faf4a49a582cb115d94a0f8d6e31eba30b0ab809f54ab8a89e25204a229c23
MD5 64031254e8502aaf87cf4da33fb0d814
BLAKE2b-256 3c854fd17e1c2c5f8618f549a1998be1650f0989f9576891790443def521c05e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page