Skip to main content

Streamlit component that allows you to create a chat prompt with paste and image attachment support

Project description

Streamlit Chat Prompt

PyPI PyPI - Downloads GitHub

A Streamlit component that provides a modern chat-style prompt with image attachment and paste support. This component was built to mimic the style of streamlit.chat_input while expanding functionality with images. Future work may include addition of speech-to-text input.

Author: Tyler House (@tahouse)

Demo

Features

  • 📝 Chat-style text input with multi-line support
  • 📎 Image attachment support via button or drag-and-drop
  • 📋 Paste image support (paste images directly from clipboard)
  • 🖼️ Image preview with ability to remove attached images
  • ⌨️ Submit with Enter key (Shift+Enter for new line)
  • 🎨 Automatic theme integration with Streamlit
  • 📱 Responsive design that works well on mobile and desktop
  • 🗜️ Automatic image compression/scaling to stay under size limits (customizable, default 5MB)
  • 📌 Optional pinned-to-bottom placement for main chat interface (one per app)
  • 🔄 Flexible positioning for use in dialogs, sidebars, or anywhere in the app flow
  • ✏️ Support for default/editable content - perfect for message editing workflows
  • 🔤 Smart focus management - automatically returns to text input after interactions

Installation

pip install streamlit-chat-prompt

Usage

import streamlit as st
from streamlit_chat_prompt import prompt

# Create a chat prompt
response = prompt(
    name="chat",  # Unique name for the prompt
    key="chat",   # Unique key for the component instance
    placeholder="Hi there! What should we talk about?",  # Optional placeholder text
    main_bottom=True,  # Pin prompt to bottom of main area
    max_image_size=5 * 1024 * 1024,  # Maximum image size (5MB default)
    disabled=False,  # Optionally disable the prompt
)

# Handle the response
if response:
    if response.message:
        st.write(f"Message: {response.message}")
    
    if response.images:
        for i, img in enumerate(response.images):
            st.write(f"Image {i+1}: {img.type} ({img.format})")

Examples

Here are some usage patterns, or check out rocktalk for a full working example.

  1. Main Chat Interface Main Chat Interface

    import base64
    from io import BytesIO
    import streamlit as st
    from streamlit_chat_prompt import PromptReturn, prompt, ImageData
    from PIL import Image
    
    
    st.chat_message("assistant").write("Hi there! What should we chat about?")
    
    prompt_return: PromptReturn | None = prompt(
        name="foo",
        key="chat_prompt",
        placeholder="Hi there! What should we chat about?",
        main_bottom=True,
    )
    
    if prompt_return:
        with st.chat_message("user"):
            st.write(prompt_return.message)
            if prompt_return.images:
                for image in prompt_return.images:
                    st.divider()
                    image_data: bytes = base64.b64decode(image.data)
                    st.markdown("Ussng `st.image`")
                    st.image(Image.open(BytesIO(image_data)))
    
                    # or use markdown
                    st.divider()
                    st.markdown("Using `st.markdown`")
                    st.markdown(f"![Hello World](data:image/png;base64,{image.data})")
    
  2. Dialog Usage and Starting From Existing Message Dialog Interface

    import base64
    from io import BytesIO
    import streamlit as st
    from streamlit_chat_prompt import PromptReturn, prompt, ImageData
    from PIL import Image
    
    with st.sidebar:
        st.header("Sidebar")
    
        if st.button("Dialog Prompt", key=f"dialog_prompt_button"):
            test_dg()
    
        if st.button(
            "Dialog Prompt with Default Value", key=f"dialog_prompt_with_default_button"
        ):
            with open("example_images/vangogh.png", "rb") as f:
                image_data = f.read()
                image = Image.open(BytesIO(image_data))
                base64_image = base64.b64encode(image_data).decode("utf-8")
                test_dg(
                    default_input=PromptReturn(
                        message="This is a test message with an image",
                        images=[
                            ImageData(data=base64_image, type="image/png", format="base64")
                        ],
                    ),
                    key="dialog_with_default",
                )
    

Component API

prompt()

Main function to create a chat prompt.

Parameters:

  • name (str): Unique name for this prompt instance
  • key (str): Unique key for the component instance
  • placeholder (str, optional): Placeholder text shown in input field
  • default (Union[str, PromptReturn], optional): Default value for the prompt. Can include text and images using the PromptReturn object type.
  • main_bottom (bool, optional): Pin prompt to bottom of main area (default: True)
  • max_image_size (int, optional): Maximum image size in bytes (default: 5MB)
  • disabled (bool, optional): Disable the prompt (default: False)

Returns:

Optional[PromptReturn]: Object containing message and images if submitted, None otherwise

PromptReturn

Object returned when user submits the prompt.

Properties:

  • message (Optional[str]): Text message entered by user
  • images (Optional[List[ImageData]]): List of attached images

ImageData

Object representing an attached image.

Properties:

  • type (str): Image MIME type (e.g. "image/jpeg")
  • format (str): Image format (e.g. "base64")
  • data (str): Image data as base64 string

Development

This repository is based on the Streamlit Component template system. If you want to modify or develop the component:

  1. Clone the repository

  2. Install development dependencies:

    pip install -e ".[devel]"
    
  3. Start the frontend development server:

    cd streamlit_chat_prompt/frontend
    npm install
    npm run start
    
  4. In a separate terminal, run your Streamlit app:

    streamlit run your_app.py
    

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit_chat_prompt-0.1.7.tar.gz (731.8 kB view details)

Uploaded Source

Built Distribution

streamlit_chat_prompt-0.1.7-py3-none-any.whl (735.1 kB view details)

Uploaded Python 3

File details

Details for the file streamlit_chat_prompt-0.1.7.tar.gz.

File metadata

  • Download URL: streamlit_chat_prompt-0.1.7.tar.gz
  • Upload date:
  • Size: 731.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for streamlit_chat_prompt-0.1.7.tar.gz
Algorithm Hash digest
SHA256 14cf9b35466f15611278b4cabd0e5c9d6540005869de4e1ce2fec467717b3c1a
MD5 b389ed184aead6a931b8b8a7d802e695
BLAKE2b-256 4ec795dba98e700206bfcfbeaeb59f05109b9ca793728b83c8e0dc06f1fcd7f5

See more details on using hashes here.

Provenance

The following attestation bundles were made for streamlit_chat_prompt-0.1.7.tar.gz:

Publisher: workflow.yaml on tahouse/streamlit-chat-prompt

Attestations:

File details

Details for the file streamlit_chat_prompt-0.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for streamlit_chat_prompt-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 3bb81af037d2ec003728e072e4869ecac8a342d6866a0e86eefbba69f9664ceb
MD5 6b37685e98c522c975706aaf492e2eed
BLAKE2b-256 5bb0570917f2ffd83a4d9ec44e2f300e079736dba98b4efc50e52fcd632219e3

See more details on using hashes here.

Provenance

The following attestation bundles were made for streamlit_chat_prompt-0.1.7-py3-none-any.whl:

Publisher: workflow.yaml on tahouse/streamlit-chat-prompt

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page