Skip to main content

Wrapper for TradingView `lightweight-charts`

Project description

streamlit-lightweight-charts

Streamlit wrapper for performant Tradingview's Financial: lightweight-charts

The Lightweight Charts library is the best choice to display financial data as an interactive chart on a web page without affecting loading speed and performance.

Versions

  • Version 0.7.19 - FIX: React build was not been commited
  • Version 0.7.20 - Example loading from CSV

How to install:

python -m pip install streamlit-lightweight-charts

How to use:

from streamlit_lightweight_charts import renderLightweightCharts

renderLightweightCharts(charts: <List of Dicts> , key: <str>)

API

  • charts: <List of Dicts>

    • chart: <Dict>

    • series: <List of Dicts>

      • type: <str-enum> [ Area, Bar, Baseline, Candlestick, Histogram, Line ]

      • data: <List of Dicts> accordingly to series type

      • options: <Dict> with style options

      • priceScale: <Dict> optional

      • markers: <List of Dicts> optional

  • key: <str> when creating multiple charts in one page


e.g.:


Overlaid Charts

Price with Volume Chart

Click for a working sample on Streamlit Cloud ⬆


import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts
import streamlit_lightweight_charts.dataSamples as data

priceVolumeChartOptions = {
    "height": 400,
    "rightPriceScale": {
        "scaleMargins": {
            "top": 0.2,
            "bottom": 0.25,
        },
        "borderVisible": False,
    },
    "overlayPriceScales": {
        "scaleMargins": {
            "top": 0.7,
            "bottom": 0,
        }
    },
    "layout": {
        "background": {
            "type": 'solid',
            "color": '#131722'
        },
        "textColor": '#d1d4dc',
    },
    "grid": {
        "vertLines": {
            "color": 'rgba(42, 46, 57, 0)',
        },
        "horzLines": {
            "color": 'rgba(42, 46, 57, 0.6)',
        }
    }
}

priceVolumeSeries = [
    {
        "type": 'Area',
        "data": data.priceVolumeSeriesArea,
        "options": {
            "topColor": 'rgba(38,198,218, 0.56)',
            "bottomColor": 'rgba(38,198,218, 0.04)',
            "lineColor": 'rgba(38,198,218, 1)',
            "lineWidth": 2,
        }
    },
    {
        "type": 'Histogram',
        "data": data.priceVolumeSeriesHistogram,
        "options": {
            "color": '#26a69a',
            "priceFormat": {
                "type": 'volume',
            },
            "priceScaleId": "" # set as an overlay setting,
        },
        "priceScale": {
            "scaleMargins": {
                "top": 0.7,
                "bottom": 0,
            }
        }
    }
]
st.subheader("Price and Volume Series Chart")

renderLightweightCharts([
    {
        "chart": priceVolumeChartOptions,
        "series": priceVolumeSeries
    }
], 'priceAndVolume')


Overlaid Areas Chart

Click for a working sample on Streamlit Cloud ⬆


import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts
import streamlit_lightweight_charts.dataSamples as data

overlaidAreaSeriesOptions = {
    "height": 400,
    "rightPriceScale": {
        "scaleMargins": {
            "top": 0.1,
            "bottom": 0.1,
        },
        "mode": 2, # PriceScaleMode: 0-Normal, 1-Logarithmic, 2-Percentage, 3-IndexedTo100
        "borderColor": 'rgba(197, 203, 206, 0.4)',
    },
    "timeScale": {
        "borderColor": 'rgba(197, 203, 206, 0.4)',
    },
    "layout": {
        "background": {
            "type": 'solid',
            "color": '#100841'
        },
        "textColor": '#ffffff',
    },
    "grid": {
        "vertLines": {
            "color": 'rgba(197, 203, 206, 0.4)',
            "style": 1, # LineStyle: 0-Solid, 1-Dotted, 2-Dashed, 3-LargeDashed
        },
        "horzLines": {
            "color": 'rgba(197, 203, 206, 0.4)',
            "style": 1, # LineStyle: 0-Solid, 1-Dotted, 2-Dashed, 3-LargeDashed
        }
    }
}

seriesOverlaidChart = [
    {
        "type": 'Area',
        "data": data.seriesMultipleChartArea01,
        "options": {
            "topColor": 'rgba(255, 192, 0, 0.7)',
            "bottomColor": 'rgba(255, 192, 0, 0.3)',
            "lineColor": 'rgba(255, 192, 0, 1)',
            "lineWidth": 2,
        },
        "markers": [
            {
                "time": '2019-04-08',
                "position": 'aboveBar',
                "color": 'rgba(255, 192, 0, 1)',
                "shape": 'arrowDown',
                "text": 'H',
                "size": 3
            },
            {
                "time": '2019-05-13',
                "position": 'belowBar',
                "color": 'rgba(255, 192, 0, 1)',
                "shape": 'arrowUp',
                "text": 'L',
                "size": 3
            },
        ]
    },
    {
        "type": 'Area',
        "data": data.seriesMultipleChartArea02,
        "options": {
            "topColor": 'rgba(67, 83, 254, 0.7)',
            "bottomColor": 'rgba(67, 83, 254, 0.3)',
            "lineColor": 'rgba(67, 83, 254, 1)',
            "lineWidth": 2,
        },
        "markers": [

            {
                "time": '2019-05-03',
                "position": 'aboveBar',
                "color": 'rgba(67, 83, 254, 1)',
                "shape": 'arrowDown',
                "text": 'PEAK',
                "size": 3
            },
        ]
    }
]
st.subheader("Overlaid Series with Markers")

renderLightweightCharts([
    {
        "chart": overlaidAreaSeriesOptions,
        "series": seriesOverlaidChart
    }
], 'overlaid')

Streamlit integration

Data Toggling for an Area Chart

Click for a working sample on Streamlit Cloud ⬆


import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts
import streamlit_lightweight_charts.dataSamples as data

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

st.subheader("Data Toggling for an Area Chart")

data_select = st.sidebar.radio('Select data source:', ('Area 01', 'Area 02'))

if data_select == 'Area 01':
    renderLightweightCharts( [
        {
            "chart": chartOptions,
            "series": [{
                "type": 'Area',
                "data": data.seriesMultipleChartArea01,
                "options": {}
            }],
        }
    ], 'area')
else:
    renderLightweightCharts( [
        {
            "chart": chartOptions,
            "series": [{
                "type": 'Area',
                "data": data.seriesMultipleChartArea02,
                "options": {}
            }],
        }
    ], 'area')


Multi Pane Chart with Pandas

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

import json
import numpy as np
import yfinance as yf
import pandas as pd
import pandas_ta as ta

COLOR_BULL = 'rgba(38,166,154,0.9)' # #26a69a
COLOR_BEAR = 'rgba(239,83,80,0.9)'  # #ef5350

# Request historic pricing data via finance.yahoo.com API
df = yf.Ticker('AAPL').history(period='4mo')[['Open', 'High', 'Low', 'Close', 'Volume']]

# Some data wrangling to match required format
df = df.reset_index()
df.columns = ['time','open','high','low','close','volume']                  # rename columns
df['time'] = df['time'].dt.strftime('%Y-%m-%d')                             # Date to string
df['color'] = np.where(  df['open'] > df['close'], COLOR_BEAR, COLOR_BULL)  # bull or bear
df.ta.macd(close='close', fast=6, slow=12, signal=5, append=True)           # calculate macd

# export to JSON format
candles = json.loads(df.to_json(orient = "records"))
volume = json.loads(df.rename(columns={"volume": "value",}).to_json(orient = "records"))
macd_fast = json.loads(df.rename(columns={"MACDh_6_12_5": "value"}).to_json(orient = "records"))
macd_slow = json.loads(df.rename(columns={"MACDs_6_12_5": "value"}).to_json(orient = "records"))
df['color'] = np.where(  df['MACD_6_12_5'] > 0, COLOR_BULL, COLOR_BEAR)  # MACD histogram color
macd_hist = json.loads(df.rename(columns={"MACD_6_12_5": "value"}).to_json(orient = "records"))


chartMultipaneOptions = [
    {
        "width": 600,
        "height": 400,
        "layout": {
            "background": {
                "type": "solid",
                "color": 'white'
            },
            "textColor": "black"
        },
        "grid": {
            "vertLines": {
                "color": "rgba(197, 203, 206, 0.5)"
                },
            "horzLines": {
                "color": "rgba(197, 203, 206, 0.5)"
            }
        },
        "crosshair": {
            "mode": 0
        },
        "priceScale": {
            "borderColor": "rgba(197, 203, 206, 0.8)"
        },
        "timeScale": {
            "borderColor": "rgba(197, 203, 206, 0.8)",
            "barSpacing": 15
        },
        "watermark": {
            "visible": True,
            "fontSize": 48,
            "horzAlign": 'center',
            "vertAlign": 'center',
            "color": 'rgba(171, 71, 188, 0.3)',
            "text": 'AAPL - D1',
        }
    },
    {
        "width": 600,
        "height": 100,
        "layout": {
            "background": {
                "type": 'solid',
                "color": 'transparent'
            },
            "textColor": 'black',
        },
        "grid": {
            "vertLines": {
                "color": 'rgba(42, 46, 57, 0)',
            },
            "horzLines": {
                "color": 'rgba(42, 46, 57, 0.6)',
            }
        },
        "timeScale": {
            "visible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 18,
            "horzAlign": 'left',
            "vertAlign": 'top',
            "color": 'rgba(171, 71, 188, 0.7)',
            "text": 'Volume',
        }
    },
    {
        "width": 600,
        "height": 200,
        "layout": {
            "background": {
                "type": "solid",
                "color": 'white'
            },
            "textColor": "black"
        },
        "timeScale": {
            "visible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 18,
            "horzAlign": 'left',
            "vertAlign": 'center',
            "color": 'rgba(171, 71, 188, 0.7)',
            "text": 'MACD',
        }
    }
]

seriesCandlestickChart = [
    {
        "type": 'Candlestick',
        "data": candles,
        "options": {
            "upColor": COLOR_BULL,
            "downColor": COLOR_BEAR,
            "borderVisible": False,
            "wickUpColor": COLOR_BULL,
            "wickDownColor": COLOR_BEAR
        }
    }
]

seriesVolumeChart = [
    {
        "type": 'Histogram',
        "data": volume,
        "options": {
            "priceFormat": {
                "type": 'volume',
            },
            "priceScaleId": "" # set as an overlay setting,
        },
        "priceScale": {
            "scaleMargins": {
                "top": 0,
                "bottom": 0,
            },
            "alignLabels": False
        }
    }
]

seriesMACDchart = [
    {
        "type": 'Line',
        "data": macd_fast,
        "options": {
            "color": 'blue',
            "lineWidth": 2
        }
    },
    {
        "type": 'Line',
        "data": macd_slow,
        "options": {
            "color": 'green',
            "lineWidth": 2
        }
    },
    {
        "type": 'Histogram',
        "data": macd_hist,
        "options": {
            "color": 'red',
            "lineWidth": 1
        }
    }
]

st.subheader("Multipane Chart with Pandas")

renderLightweightCharts([
    {
        "chart": chartMultipaneOptions[0],
        "series": seriesCandlestickChart
    },
    {
        "chart": chartMultipaneOptions[1],
        "series": seriesVolumeChart
    },
    {
        "chart": chartMultipaneOptions[2],
        "series": seriesMACDchart
    }
], 'multipane')


Multi Pane Chart (intraday) from CSV)

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

import json
import numpy as np
import pandas as pd

COLOR_BULL = 'rgba(38,166,154,0.9)' # #26a69a
COLOR_BEAR = 'rgba(239,83,80,0.9)'  # #ef5350

CSVFILE = 'https://github.com/freyastreamlit/streamlit-lightweight-charts/blob/main/examples/MultiPaneChartsFromCSV.csv?raw=true'

df = pd.read_csv(CSVFILE, skiprows=0, parse_dates=['datetime'], skip_blank_lines=True)

df['time'] = df['datetime'].view('int64') // 10**9  # We will use time in UNIX timestamp
df['color'] = np.where(  df['open'] > df['close'], COLOR_BEAR, COLOR_BULL)  # bull or bear

# export to JSON format
candles = json.loads(
    df.filter(['time','open','high','low','close'], axis=1)
      .to_json(orient = "records") )

volume = json.loads(
    df.filter(['time','volume'], axis=1)
      .rename(columns={"volume": "value",})
      .to_json(orient = "records") )

macd_fast = json.loads(
    df.filter(['time','macd_fast'], axis=1)
      .rename(columns={"macd_fast": "value"})
      .to_json(orient = "records"))

macd_slow = json.loads(
    df.filter(['time','macd_slow'], axis=1)
      .rename(columns={"macd_slow": "value"})
      .to_json(orient = "records"))

df['color'] = np.where(  df['macd_hist'] > 0, COLOR_BULL, COLOR_BEAR)  # MACD histogram color
macd_hist = json.loads(
    df.filter(['time','macd_hist'], axis=1)
      .rename(columns={"macd_hist": "value"})
      .to_json(orient = "records"))

chartMultipaneOptions = [
    {
        "width": 600,
        "height": 400,
        "layout": {
            "background": {
                "type": "solid",
                "color": 'white'
            },
            "textColor": "black"
        },
        "grid": {
            "vertLines": {
                "color": "rgba(197, 203, 206, 0.5)"
                },
            "horzLines": {
                "color": "rgba(197, 203, 206, 0.5)"
            }
        },
        "crosshair": {
            "mode": 0
        },
        "priceScale": {
            "borderColor": "rgba(197, 203, 206, 0.8)"
        },
        "timeScale": {
            "borderColor": "rgba(197, 203, 206, 0.8)",
            "barSpacing": 10,
            "minBarSpacing": 8,
            "timeVisible": True,
            "secondsVisible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 48,
            "horzAlign": 'center',
            "vertAlign": 'center',
            "color": 'rgba(171, 71, 188, 0.3)',
            "text": 'Intraday',
        }
    },
    {
        "width": 600,
        "height": 100,
        "layout": {
            "background": {
                "type": 'solid',
                "color": 'transparent'
            },
            "textColor": 'black',
        },
        "grid": {
            "vertLines": {
                "color": 'rgba(42, 46, 57, 0)',
            },
            "horzLines": {
                "color": 'rgba(42, 46, 57, 0.6)',
            }
        },
        "timeScale": {
            "visible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 18,
            "horzAlign": 'left',
            "vertAlign": 'top',
            "color": 'rgba(171, 71, 188, 0.7)',
            "text": 'Volume',
        }
    },
    {
        "width": 600,
        "height": 200,
        "layout": {
            "background": {
                "type": "solid",
                "color": 'white'
            },
            "textColor": "black"
        },
        "timeScale": {
            "visible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 18,
            "horzAlign": 'left',
            "vertAlign": 'center',
            "color": 'rgba(171, 71, 188, 0.7)',
            "text": 'MACD',
        }
    }
]

seriesCandlestickChart = [
    {
        "type": 'Candlestick',
        "data": candles,
        "options": {
            "upColor": COLOR_BULL,
            "downColor": COLOR_BEAR,
            "borderVisible": False,
            "wickUpColor": COLOR_BULL,
            "wickDownColor": COLOR_BEAR
        }
    }
]

seriesVolumeChart = [
    {
        "type": 'Histogram',
        "data": volume,
        "options": {
            "priceFormat": {
                "type": 'volume',
            },
            "priceScaleId": "" # set as an overlay setting,
        },
        "priceScale": {
            "scaleMargins": {
                "top": 0,
                "bottom": 0,
            },
            "alignLabels": False
        }
    }
]

seriesMACDchart = [
    {
        "type": 'Line',
        "data": macd_fast,
        "options": {
            "color": 'blue',
            "lineWidth": 2
        }
    },
    {
        "type": 'Line',
        "data": macd_slow,
        "options": {
            "color": 'green',
            "lineWidth": 2
        }
    },
    {
        "type": 'Histogram',
        "data": macd_hist,
        "options": {
            # "color": 'red',
            "lineWidth": 1
        }
    }
]

st.subheader("Multipane Chart (intraday) from CSV")

renderLightweightCharts([
    {
        "chart": chartMultipaneOptions[0],
        "series": seriesCandlestickChart
    },
    {
        "chart": chartMultipaneOptions[1],
        "series": seriesVolumeChart
    },
    {
        "chart": chartMultipaneOptions[2],
        "series": seriesMACDchart
    }
], 'multipane')


Basic charts

Line Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesLineChart = [{
    "type": 'Line',
    "data": [
        { "time": '2018-12-22', "value": 32.51 },
        { "time": '2018-12-23', "value": 31.11 },
        { "time": '2018-12-24', "value": 27.02 },
        { "time": '2018-12-25', "value": 27.32 },
        { "time": '2018-12-26', "value": 25.17 },
        { "time": '2018-12-27', "value": 28.89 },
        { "time": '2018-12-28', "value": 25.46 },
        { "time": '2018-12-29', "value": 23.92 },
        { "time": '2018-12-30', "value": 22.68 },
        { "time": '2018-12-31', "value": 22.67 },
    ],
    "options": {}
}]

st.subheader("Line Chart with Watermark")

renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesLineChart
    }
], 'line')


Area Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesAreaChart = [{
    "type": 'Area',
    "data": [
        { "time": '2018-12-22', "value": 32.51 },
        { "time": '2018-12-23', "value": 31.11 },
        { "time": '2018-12-24', "value": 27.02 },
        { "time": '2018-12-25', "value": 27.32 },
        { "time": '2018-12-26', "value": 25.17 },
        { "time": '2018-12-27', "value": 28.89 },
        { "time": '2018-12-28', "value": 25.46 },
        { "time": '2018-12-29', "value": 23.92 },
        { "time": '2018-12-30', "value": 22.68 },
        { "time": '2018-12-31', "value": 22.67 },
    ],
    "options": {}
}]

st.subheader("Area Chart with Watermark")
renderLightweightCharts( [
    {
        "chart": chartOptions,
        "series": seriesAreaChart,
    }
], 'area')


Histogram Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesHistogramChart = [{
    "type": 'Histogram',
    "data": [
        { "value": 1, "time": 1642425322 },
        { "value": 8, "time": 1642511722 },
        { "value": 10, "time": 1642598122 },
        { "value": 20, "time": 1642684522 },
        { "value": 3, "time": 1642770922, "color": 'red' },
        { "value": 43, "time": 1642857322 },
        { "value": 41, "time": 1642943722, "color": 'red' },
        { "value": 43, "time": 1643030122 },
        { "value": 56, "time": 1643116522 },
        { "value": 46, "time": 1643202922, "color": 'red' }
    ],
    "options": { "color": '#26a69a' }
}]

st.subheader("Histogram Chart with Watermark")

renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesHistogramChart
    }
], 'histogram')


Bar Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesBarChart = [{
    "type": 'Bar',
    "data": [
        { "open": 10, "high": 10.63, "low": 9.49, "close": 9.55, "time": 1642427876 },
        { "open": 9.55, "high": 10.30, "low": 9.42, "close": 9.94, "time": 1642514276 },
        { "open": 9.94, "high": 10.17, "low": 9.92, "close": 9.78, "time": 1642600676 },
        { "open": 9.78, "high": 10.59, "low": 9.18, "close": 9.51, "time": 1642687076 },
        { "open": 9.51, "high": 10.46, "low": 9.10, "close": 10.17, "time": 1642773476 },
        { "open": 10.17, "high": 10.96, "low": 10.16, "close": 10.47, "time": 1642859876 },
        { "open": 10.47, "high": 11.39, "low": 10.40, "close": 10.81, "time": 1642946276 },
        { "open": 10.81, "high": 11.60, "low": 10.30, "close": 10.75, "time": 1643032676 },
        { "open": 10.75, "high": 11.60, "low": 10.49, "close": 10.93, "time": 1643119076 },
        { "open": 10.93, "high": 11.53, "low": 10.76, "close": 10.96, "time": 1643205476 }
    ],
    "options": {
        "upColor": '#26a69a',
        "downColor": '#ef5350'
    }
}]

st.subheader("Bar Chart with Watermark")
renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesBarChart
    }
], 'bar')


Candlestick Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesCandlestickChart = [{
    "type": 'Candlestick',
    "data": [
        { "open": 10, "high": 10.63, "low": 9.49, "close": 9.55, "time": 1642427876 },
        { "open": 9.55, "high": 10.30, "low": 9.42, "close": 9.94, "time": 1642514276 },
        { "open": 9.94, "high": 10.17, "low": 9.92, "close": 9.78, "time": 1642600676 },
        { "open": 9.78, "high": 10.59, "low": 9.18, "close": 9.51, "time": 1642687076 },
        { "open": 9.51, "high": 10.46, "low": 9.10, "close": 10.17, "time": 1642773476 },
        { "open": 10.17, "high": 10.96, "low": 10.16, "close": 10.47, "time": 1642859876 },
        { "open": 10.47, "high": 11.39, "low": 10.40, "close": 10.81, "time": 1642946276 },
        { "open": 10.81, "high": 11.60, "low": 10.30, "close": 10.75, "time": 1643032676 },
        { "open": 10.75, "high": 11.60, "low": 10.49, "close": 10.93, "time": 1643119076 },
        { "open": 10.93, "high": 11.53, "low": 10.76, "close": 10.96, "time": 1643205476 }
    ],
    "options": {
        "upColor": '#26a69a',
        "downColor": '#ef5350',
        "borderVisible": False,
        "wickUpColor": '#26a69a',
        "wickDownColor": '#ef5350'
    }
}]

st.subheader("Candlestick Chart with Watermark")

renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesCandlestickChart
    }
], 'candlestick')


Baseline Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesBaselineChart = [{
    "type": 'Baseline',
    "data": [
        { "value": 1, "time": 1642425322 },
        { "value": 8, "time": 1642511722 },
        { "value": 10, "time": 1642598122 },
        { "value": 20, "time": 1642684522 },
        { "value": 3, "time": 1642770922 },
        { "value": 43, "time": 1642857322 },
        { "value": 41, "time": 1642943722 },
        { "value": 43, "time": 1643030122 },
        { "value": 56, "time": 1643116522 },
        { "value": 46, "time": 1643202922 }
    ],
    "options": {
        "baseValue": { "type": "price", "price": 25 },
        "topLineColor": 'rgba( 38, 166, 154, 1)',
        "topFillColor1": 'rgba( 38, 166, 154, 0.28)',
        "topFillColor2": 'rgba( 38, 166, 154, 0.05)',
        "bottomLineColor": 'rgba( 239, 83, 80, 1)',
        "bottomFillColor1": 'rgba( 239, 83, 80, 0.05)',
        "bottomFillColor2": 'rgba( 239, 83, 80, 0.28)'
    }
}]

st.subheader("Baseline Chart with Watermark")

renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesBaselineChart
    }
], 'baseline')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit-lightweight-charts-0.7.20.tar.gz (661.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file streamlit-lightweight-charts-0.7.20.tar.gz.

File metadata

File hashes

Hashes for streamlit-lightweight-charts-0.7.20.tar.gz
Algorithm Hash digest
SHA256 1341348b8286c23975246b391956295c70cb315c06eaec9a51b31e5bcf774ef5
MD5 003ace519d0c5d6e189562c9f2a9a05d
BLAKE2b-256 7e514a1b5c968746baf403845e4dc58d0e4c789f0a4274a690b06d1f11e073a2

See more details on using hashes here.

File details

Details for the file streamlit_lightweight_charts-0.7.20-py3-none-any.whl.

File metadata

File hashes

Hashes for streamlit_lightweight_charts-0.7.20-py3-none-any.whl
Algorithm Hash digest
SHA256 61e0edc669dac626176a16da173414f577161f28107a3475762640d5665c7fe4
MD5 18c63edcd2197d5e72d60e3fb669204f
BLAKE2b-256 95d1adc3380ab8f92c7c89516a562186349a61cf063a931e88811398fccd2024

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page