Skip to main content

Modal text input component for Streamlit

Project description

streamlit-modal-input

Streamlit component providing a 'modal' text input widget (actually pausing the script until a string is entered and returned). Implemented using firestore for direct communication between backend and frontend.

Installation instructions

pip install streamlit-modal-input

Usage instructions

text=modal_input(
    prompt,
    firebase_credentials=None,
    firebase_config=None
)

Starts a firestore listener watching for changes in a specific firestore document. Renders a text input widget, whose output is routed to this firestore document. Waits until the listener receives the output string. Gets the string, closes the listener, deletes the firebase document. Returns the string.

The python script will thus wait for the string to be received, achieving a similar behavior as regular python input function.

You first need to set up a firebase account and a firestore database for using this.

If you don't provide your firebase credentials and config directly to the component, it will attempt to get them from st.secrets (keys: firebase_credentials and firebase_config).

In such case your secrets.toml file should have these entries :

[firebase_credentials]
type=...
project_id=...
private_key_id=...
private_key=...
client_email=...
client_id=...
auth_uri=...
token_uri=...
auth_provider_x509_cert_url=...
client_x509_cert_url=...
universe_domain=...

[firebase_config]
apiKey=...
authDomain=...
projectId=...
storageBucket=...
messagingSenderId=...
appId=...
measurementId=...

Example

import streamlit as st
from streamlit_modal_input import modal_input

my_firebase_creds={
    ...
}

my_firebase_config={
    ...
}

text=modal_input(
    "Enter text here",
    firebase_credentials=my_firebase_creds,
    firebase_config=my_firebase_config
)

st.write(text)

#Or, assuming you provided yours credentials and config in st.secrets

text=modal_input("Enter text here")

st.write(text)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit_modal_input-0.0.4.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

streamlit_modal_input-0.0.4-py3-none-any.whl (4.4 kB view details)

Uploaded Python 3

File details

Details for the file streamlit_modal_input-0.0.4.tar.gz.

File metadata

  • Download URL: streamlit_modal_input-0.0.4.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for streamlit_modal_input-0.0.4.tar.gz
Algorithm Hash digest
SHA256 c0211cd275cb729b772c499c81995b9d1c5e23d0771a61fb6048bc04a445ce48
MD5 f83cfb6166a5adff1ab44178b38ecff3
BLAKE2b-256 2ed2460d5e8ac3bcd1af80c8a6203d582b6cb3aa25f5f885d40b2ce645bfce90

See more details on using hashes here.

File details

Details for the file streamlit_modal_input-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for streamlit_modal_input-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 d268199b3b43a0684bd023b4395e5bd92472bc50fa0696fec328a17313d626af
MD5 762c14797d5a33e3799b15369dc2a2ed
BLAKE2b-256 42e89835c249597d72db76495cadc9f6589ade5593ad0c31fb51403246588225

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page