Skip to main content

Modal text input component for Streamlit

Project description

streamlit-modal-input

Streamlit component providing a 'modal' text input widget (actually pausing the script until a string is entered and returned). Implemented using firestore for direct communication between backend and frontend.

Installation instructions

pip install streamlit-modal-input

Usage instructions

text=modal_input(
    prompt,
    firebase_credentials=None,
    firebase_config=None
)

Starts a firestore listener watching for changes in a specific firestore document. Renders a text input widget, whose output is routed to this firestore document. Waits until the listener receives the output string. Gets the string, closes the listener, deletes the firebase document. Returns the string.

The python script will thus wait for the string to be received, achieving a similar behavior as regular python input function.

You first need to set up a firebase account and a firestore database for using this.

If you don't provide your firebase credentials and config directly to the component, it will attempt to get them from st.secrets (keys: firebase_credentials and firebase_config).

In such case your secrets.toml file should have these entries :

[firebase_credentials]
type=...
project_id=...
private_key_id=...
private_key=...
client_email=...
client_id=...
auth_uri=...
token_uri=...
auth_provider_x509_cert_url=...
client_x509_cert_url=...
universe_domain=...

[firebase_config]
apiKey=...
authDomain=...
projectId=...
storageBucket=...
messagingSenderId=...
appId=...
measurementId=...

Example

import streamlit as st
from streamlit_modal_input import modal_input

my_firebase_creds={
    ...
}

my_firebase_config={
    ...
}

text=modal_input(
    "Enter text here",
    firebase_credentials=my_firebase_creds,
    firebase_config=my_firebase_config
)

st.write(text)

#Or, assuming you provided yours credentials and config in st.secrets

text=modal_input("Enter text here")

st.write(text)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit_modal_input-0.0.7.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

streamlit_modal_input-0.0.7-py3-none-any.whl (2.5 MB view details)

Uploaded Python 3

File details

Details for the file streamlit_modal_input-0.0.7.tar.gz.

File metadata

  • Download URL: streamlit_modal_input-0.0.7.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for streamlit_modal_input-0.0.7.tar.gz
Algorithm Hash digest
SHA256 1b497a876457003db79de26bea7255bf393a4c2658233af12cc9f5442983439b
MD5 878f74d5026393626022cfe2c72acb95
BLAKE2b-256 a00d57b37be582343c47957ab8994a1600332d5bab60753f16b5a8b62543bff9

See more details on using hashes here.

File details

Details for the file streamlit_modal_input-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for streamlit_modal_input-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 b0c8eb99966a4ede0c238185abf2fb6dd60cc03223ba7be3bcbe52835464a81a
MD5 cceff77dcb0e16284b76bd8cb439c284
BLAKE2b-256 86dc28c75a3113a7400e279917f5d1cc8424a38a7aa058d9d16b877f08ea970a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page