Skip to main content

Modal text input component for Streamlit

Project description

streamlit-modal-input

Streamlit component providing a 'modal' text input widget (actually pausing the script until a string is entered and returned). Implemented using firestore for direct communication between backend and frontend.

Installation instructions

pip install streamlit-modal-input

Usage instructions

text=modal_input(
    prompt,
    firebase_credentials=None,
    firebase_config=None
)

Starts a firestore listener watching for changes in a specific firestore document. Renders a text input widget, whose output is routed to this firestore document. Waits until the listener receives the output string. Gets the string, closes the listener, deletes the firebase document. Returns the string.

The python script will thus wait for the string to be received, achieving a similar behavior as regular python input function.

You first need to set up a firebase account and a firestore database for using this.

If you don't provide your firebase credentials and config directly to the component, it will attempt to get them from st.secrets (keys: firebase_credentials and firebase_config).

In such case your secrets.toml file should have these entries :

[firebase_credentials]
type=...
project_id=...
private_key_id=...
private_key=...
client_email=...
client_id=...
auth_uri=...
token_uri=...
auth_provider_x509_cert_url=...
client_x509_cert_url=...
universe_domain=...

[firebase_config]
apiKey=...
authDomain=...
projectId=...
storageBucket=...
messagingSenderId=...
appId=...
measurementId=...

Example

import streamlit as st
from streamlit_modal_input import modal_input

my_firebase_creds={
    ...
}

my_firebase_config={
    ...
}

text=modal_input(
    "Enter text here",
    firebase_credentials=my_firebase_creds,
    firebase_config=my_firebase_config
)

st.write(text)

#Or, assuming you provided yours credentials and config in st.secrets

text=modal_input("Enter text here")

st.write(text)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit_modal_input-0.0.9.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

streamlit_modal_input-0.0.9-py3-none-any.whl (2.5 MB view details)

Uploaded Python 3

File details

Details for the file streamlit_modal_input-0.0.9.tar.gz.

File metadata

  • Download URL: streamlit_modal_input-0.0.9.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for streamlit_modal_input-0.0.9.tar.gz
Algorithm Hash digest
SHA256 39f374711f16ac249e26900611abfea977916ddebcd692c6407cf87f47d9c4b7
MD5 578cdce1cfdf96337b3b89c5189cb38d
BLAKE2b-256 64fc548f07f4332876f40b7a4faac9a977832d83003f133dd74542f544f73719

See more details on using hashes here.

File details

Details for the file streamlit_modal_input-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for streamlit_modal_input-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 3a34b387d9d9b24a595a354d1ddb84179c2860f56a6dcaccaefcddd511a85fca
MD5 9d0f251fbc2953d71d71d4819eabdb78
BLAKE2b-256 0062e9b7daf9cac34e8d76fbe4d76dd8b9c1dc634691a6ce7ecd14487b15b8c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page