Streamlit component that allows you add overlays to images
Project description
Streamlit-Overlay 🖼️🖌️
👌 Simplify adding overlays to images in Streamlit
Installation
pip install streamlit-overlay
Quick Start
In your app.py
insert the following lines of code.
from streamlit_overlay import overlay
images = ... # np.narray of shape (#frames, height, width, 3)
masks = ... # np.array of shape (#frames, height, width, 3)
overlay(images, masks, key="example_overlay")
Running your app via
streamlit run app.py
will then render a customizable video demo.
API
streamlit_overlay.overlay(images, masks=[], alpha=0.5, key=None, toggle_label="Display Overlay", fps=30, autoplay=False)
Creates an instance of the "overlay" component for use in a Streamlit app. It allows for the overlaying of masks on images, with customizable options for transparency, display controls, and playback settings.
Parameters
-
images
: np.ndarray or List[Image]The images to display. This can be a single image or a sequence of images (for video). The shape should be (height, width, 3) for a single image or (num_frames, height, width, 3) for a sequence.
-
masks
: np.ndarray or List[Image], optionalThe masks to overlay on the images. This should match the shape of the images parameter. If not provided, the function will only display the images.
-
alpha
: float, optionalThe transparency level for the mask overlay. A value of 0 means the mask is fully transparent, while 1 means it is fully opaque.
-
key
: str or None, optionalAn optional key that uniquely identifies this component. If this is None, and the component's arguments are changed, the component will be re-mounted in the Streamlit frontend and lose its current state.
-
toggle_label
: str, optionalThe label for the toggle button that controls the visibility of the overlay.
-
fps
: int, optional Frames per second for displaying a video. -
autoplay
: bool, optionalWhether to automatically start playing the video upon loading. This setting is only relevant if images and masks represent a sequence of frames.
streamlit_overlay.heatmap_overlay(images, masks, colormap=cv2.COLORMAP_JET, toggle_label="Display Heatmap", *args, **kwargs)
Creates an instance of the "heatmap_overlay" component for overlaying heatmaps, e.g. of attribution maps, over images within a Streamlit app. This component processes the provided masks by applying a colormap, enhancing the visualization of data overlays.
Parameters
-
images
: np.ndarray or List[Image]The images to display. This can be a single image or a sequence of images (for video). The shape should be (height, width, 3) for a single image or (num_frames, height, width, 3) for a sequence.
-
masks
: np.ndarray or List[Image], optionalThe masks to overlay on the images. The shape should be (height, width) for a single mask or (num_frames, height, width) for a sequence. These masks will be processed using the specified colormap.
-
colormap
: int, optionalThe OpenCV colormap identifier to use for applying color to the masks. This allows for a more vivid and informative visualization of the mask data.
-
toggle_label
: str, optionalThe label for the toggle button that controls the visibility of the overlay.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file streamlit_overlay-0.0.1.tar.gz
.
File metadata
- Download URL: streamlit_overlay-0.0.1.tar.gz
- Upload date:
- Size: 125.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d41c65e600943e41a04d3932b8f480332f0d243cbf7344a6218dcd4ab7c207a0 |
|
MD5 | b9e256c9e368cdd1325e0fe9f574bf99 |
|
BLAKE2b-256 | d718d22be1e2c420614e2fc300dd53e2d643998f2d0fed1aa0ef97cfa338b233 |
File details
Details for the file streamlit_overlay-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: streamlit_overlay-0.0.1-py3-none-any.whl
- Upload date:
- Size: 124.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86906386b74a88728034b8a81e6833def9a177cc379f0a28b1fc386201b3ab99 |
|
MD5 | ca02a6751e98dbd26d2ddfb78b990b19 |
|
BLAKE2b-256 | 799fc905329c41d99f52c27447034f414cc2a318d5ee3debaada0a4c62b812d5 |