Skip to main content

Auto-generate Streamlit UI from Pydantic Models & Dataclasses.

Project description

Streamlit Pydantic

Auto-generate Streamlit UI elements from Pydantic models.

Getting StartedDocumentationSupportReport a BugContributionChangelog

Streamlit-pydantic makes it easy to auto-generate UI elements from Pydantic models or dataclasses. Just define your data model and turn it into a full-fledged UI form. It supports data validation, nested models, and field limitations. Streamlit-pydantic can be easily integrated into any Streamlit app.

Beta Version: Only suggested for experimental usage.


Try out and explore various examples in our playground here.


Highlights

  • 🪄  Auto-generated UI elements from Pydantic models & Dataclasses.
  • 📇  Out-of-the-box data validation.
  • 📑  Supports nested Pydantic models.
  • 📏  Supports field limits and customizations.
  • 🎈  Easy to integrate into any Streamlit app.

Getting Started

Installation

Requirements: Python 3.6+.

pip install streamlit-pydantic

Usage

  1. Create a script (my_script.py) with a Pydantic model and render it via pydantic_form:

    import streamlit as st
    from pydantic import BaseModel
    import streamlit_pydantic as sp
    
    class ExampleModel(BaseModel):
        some_text: str
        some_number: int
        some_boolean: bool
    
    data = sp.pydantic_form(key="my_form", model=ExampleModel)
    if data:
        st.json(data.json())
    
  2. Run the streamlit server on the python script: streamlit run my_script.py

  3. You can find additional examples in the examples section below.

Examples


👉  Try out and explore these examples in our playground here


The following collection of examples demonstrate how Streamlit Pydantic can be applied in more advanced scenarios. You can find additional - even more advanced - examples in the examples folder or in the playground.

Simple Form

import streamlit as st
from pydantic import BaseModel

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int
    some_boolean: bool

data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Date Validation

import streamlit as st
from pydantic import BaseModel, Field, HttpUrl
from pydantic.color import Color

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    url: HttpUrl
    color: Color
    email: str = Field(..., max_length=100, regex=r"^\S+@\S+$")


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Dataclasses Support

import dataclasses
import json

import streamlit as st
from pydantic.json import pydantic_encoder

import streamlit_pydantic as sp


@dataclasses.dataclass
class ExampleModel:
    some_number: int
    some_boolean: bool
    some_text: str = "default input"


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(json.dumps(data, default=pydantic_encoder))

Complex Nested Model

from enum import Enum
from typing import Set

import streamlit as st
from pydantic import BaseModel, Field, ValidationError, parse_obj_as

import streamlit_pydantic as sp


class OtherData(BaseModel):
    text: str
    integer: int


class SelectionValue(str, Enum):
    FOO = "foo"
    BAR = "bar"


class ExampleModel(BaseModel):
    long_text: str = Field(..., description="Unlimited text property")
    integer_in_range: int = Field(
        20,
        ge=10,
        lt=30,
        multiple_of=2,
        description="Number property with a limited range.",
    )
    single_selection: SelectionValue = Field(
        ..., description="Only select a single item from a set."
    )
    multi_selection: Set[SelectionValue] = Field(
        ..., description="Allows multiple items from a set."
    )
    single_object: OtherData = Field(
        ...,
        description="Another object embedded into this model.",
    )


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Render Input

from pydantic import BaseModel

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int = 10  # Optional
    some_boolean: bool = True  # Option


input_data = sp.pydantic_input("model_input", ExampleModel, use_sidebar=True)

Render Output

import datetime

from pydantic import BaseModel, Field

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    text: str = Field(..., description="A text property")
    integer: int = Field(..., description="An integer property.")
    date: datetime.date = Field(..., description="A date.")


instance = ExampleModel(text="Some text", integer=40, date=datetime.date.today())
sp.pydantic_output(instance)

Custom Form

import streamlit as st
from pydantic import BaseModel

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int = 10
    some_boolean: bool = True


with st.form(key="pydantic_form"):
    sp.pydantic_input(key="my_input_model", model=ExampleModel)
    submit_button = st.form_submit_button(label="Submit")

Support & Feedback

Type Channel
🚨  Bug Reports
🎁  Feature Requests
👩‍💻  Usage Questions
📢  Announcements

Documentation

The API documentation can be found here. To generate UI elements, you can use the high-level pydantic_form method. Or the more flexible lower-level pydantic_input and pydantic_output methods. See the examples section on how to use those methods.

Contribution

Development

To build the project and run the style/linter checks, execute:

make install
make check

Run make help to see additional commands for development.


Licensed MIT. Created and maintained with ❤️  by developers from Berlin.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit-pydantic-0.6.0.tar.gz (22.2 kB view details)

Uploaded Source

Built Distribution

streamlit_pydantic-0.6.0-py3-none-any.whl (18.1 kB view details)

Uploaded Python 3

File details

Details for the file streamlit-pydantic-0.6.0.tar.gz.

File metadata

  • Download URL: streamlit-pydantic-0.6.0.tar.gz
  • Upload date:
  • Size: 22.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for streamlit-pydantic-0.6.0.tar.gz
Algorithm Hash digest
SHA256 3bc5d51af085eb6791b360f569f1a541681ddcc51579b09a1e2ab54639b39d49
MD5 8288e1bef2285ca65140229be48d15bb
BLAKE2b-256 8ada918863014e53f862a0158f97eca03d8107cd2de45d5e92ecc2b3a85d4f5d

See more details on using hashes here.

File details

Details for the file streamlit_pydantic-0.6.0-py3-none-any.whl.

File metadata

File hashes

Hashes for streamlit_pydantic-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7a69ec6519f5de1b21bd9737891c61d8fea33d7727824ab19c4c65d49f136304
MD5 ce90fab51510f3ebd32833170813f692
BLAKE2b-256 bc534bf8c20ebfd5fc60040d7d09777a983b54156af65978617edf56531abb6e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page