Streamlit component for SHAP
Project description
streamlit-shap
This component provides a wrapper to display SHAP plots in Streamlit.
Installation
First install Streamlit (of course!) then pip install this library:
pip install streamlit
pip install streamlit-shap
Example
import streamlit as st
from streamlit_shap import st_shap
import shap
from sklearn.model_selection import train_test_split
import xgboost
import numpy as np
import pandas as pd
@st.experimental_memo
def load_data():
return shap.datasets.adult()
@st.experimental_memo
def load_model(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
d_train = xgboost.DMatrix(X_train, label=y_train)
d_test = xgboost.DMatrix(X_test, label=y_test)
params = {
"eta": 0.01,
"objective": "binary:logistic",
"subsample": 0.5,
"base_score": np.mean(y_train),
"eval_metric": "logloss",
"n_jobs": -1,
}
model = xgboost.train(params, d_train, 10, evals = [(d_test, "test")], verbose_eval=100, early_stopping_rounds=20)
return model
st.title("SHAP in Streamlit")
# train XGBoost model
X,y = load_data()
X_display,y_display = shap.datasets.adult(display=True)
model = load_model(X, y)
# compute SHAP values
explainer = shap.Explainer(model, X)
shap_values = explainer(X)
st_shap(shap.plots.waterfall(shap_values[0]), height=300)
st_shap(shap.plots.beeswarm(shap_values), height=300)
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)
st_shap(shap.force_plot(explainer.expected_value, shap_values[0,:], X_display.iloc[0,:]), height=200, width=1000)
st_shap(shap.force_plot(explainer.expected_value, shap_values[:1000,:], X_display.iloc[:1000,:]), height=400, width=1000)
Notes
Colorbar changes in matplotlib>3.4.3
introduced bugs (#22625, #22087) that cause the colorbar of certain shap plots (e.g. beeswarm
) to not display properly. If colorbars are not displayed properly, try downgrading matplotlib
to 3.4.3
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
streamlit-shap-1.0.2.tar.gz
(4.4 kB
view details)
Built Distribution
File details
Details for the file streamlit-shap-1.0.2.tar.gz
.
File metadata
- Download URL: streamlit-shap-1.0.2.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d48d4b0ee54c8576cc942949e18416b288bd6ac791051cc55345fe125fec1ab3 |
|
MD5 | 688bef37f0fda43997fc4ecafc9eec47 |
|
BLAKE2b-256 | a405a7e8543ebc2e1ea47995ba2eb58de8cfa06152c779bf0c03508b24a6d97f |
File details
Details for the file streamlit_shap-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: streamlit_shap-1.0.2-py3-none-any.whl
- Upload date:
- Size: 4.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1762aca13393bab8a98eececd07985d9f9ab53b8866d48fb81186ce123bde7d2 |
|
MD5 | cd4457760bdfb58b7c2177a9e42a35d6 |
|
BLAKE2b-256 | a55a1481baf35b7c86010196ce418f3c07c05e95c8e48c1824668d4b82262a75 |