Skip to main content

Generate streamlit frontends from python functions

Project description

streamlitfront

Generate streamlit frontends from python functions

To install: pip install streamlitfront

Example

Define functions in a file named render_functions.py:

def foo(a: int = 1, b: int = 2, c=3):
    """This is foo. It computes something"""
    return (a * b) + c


def bar(x, greeting="hello"):
    """bar greets its input"""
    return f"{greeting} {x}"


def confuser(a: int, x: float = 3.14):
    return (a ** 2) * x


funcs = [foo, bar, confuser]

Then add the following to the file (we will be modifying this part):

from streamlitfront import mk_app

if __name__ == '__main__':
    app = mk_app(funcs)
    app()

Execute streamlit run render_functions.py in terminal and ...

image

image

image

... you can play with your functions!

Configuration

The default configuration for the application is define by the convention object: dflt_convention. But you can overwrite parts or the entire configuration by setting the config parameter. The configuration is composed of three parts: app, obj and rendering.

  • app

    By default, the application name is "My Front Application", but you can set the title of the application as follow:

    from streamlitfront import mk_app
    
    
    if __name__ == '__main__':
        config = {
            'app': {
                'title': 'Another application name'
            }
        }
        app = mk_app(funcs, config=config)
        app()
    

    Execute streamlit run render_functions.py in terminal and ...

    image

    ... the application name changed!

  • obj

    You can define a wrapper to transform the initial object into an output of your choice to be rendered:

    from typing import Iterable
    from streamlitfront import mk_app
    
    
    def trans(objs: Iterable):
        return list(reversed(objs))
    
    
    if __name__ == '__main__':
        config = {
            'obj': {
                'trans': trans
            }
        }
        app = mk_app(funcs, config=config)
        app()
    

    Execute streamlit run render_functions.py in terminal and ...

    image

    ... the view order has changed !

    Note that the capital letter at the beginning of the view names are gone, because the default transforming is no longer applied.

  • rendering

    You can define the way elements are rendered in the GUI. For instance, you can choose to render a text input instead of a number input for a specific parameter of a specific function:

    from front.elements import INT_INPUT_SLIDER_COMPONENT
    from streamlitfront import mk_app
    
    
    if __name__ == '__main__':
        config = {
            'rendering': {
                'Foo': {
                    'inputs': {
                        'a': {
                            'component': INT_INPUT_SLIDER_COMPONENT,
                            'max_value': 10
                        }
                    }
                }
            }
        }
        app = mk_app(funcs, config=config)
        app()
    

    Execute streamlit run render_functions.py in terminal and ...

    image

    ... the input a is a slider now !

Obviously, you can combine the three types of configuration:

from typing import Iterable
from front.elements import INT_INPUT_SLIDER_COMPONENT
from streamlitfront import mk_app
    

def trans(objs: Iterable):
    return list(reversed(objs))


if __name__ == '__main__':
    config = {
        'app': {
            'title': 'Another application name'
        },
        'obj': {
            'trans': trans
        },
        'rendering': {
            'foo': {
                'inputs': {
                    'a': {
                        'component': INT_INPUT_SLIDER_COMPONENT,
                        'max_value': 10
                    }
                }
            }
        }
    }
    app = mk_app(funcs, config=config)
    app()

Execute streamlit run render_functions.py in terminal and ...

image

... all three configurations are applied !

You can also overwrite the whole configuration by setting the convention parameter. Be careful though, by overwritting the default convention, you have to make sure that all configuations are defined. Otherwise, the application would crash or behave unexpectedly.

from typing import Any, Callable, Iterable
from front.elements import VIEW_CONTAINER, FLOAT_INPUT_SLIDER_COMPONENT, TEXT_INPUT_COMPONENT
from streamlitfront import mk_app
    

def trans(objs: Iterable):
    return list(reversed(objs))


if __name__ == '__main__':
    convention = {
        'app': {
            'title': 'Another application name'
        },
        'obj': {
            'trans': trans
        },
        'rendering': {
            Callable: {
                'container': VIEW_CONTAINER,
                'inputs': {
                    float: {
                        'component': FLOAT_INPUT_SLIDER_COMPONENT,
                        'max_value': 10.0,
                        'format': '%.2f',
                        'step': 0.01,
                    },
                    Any: {
                        'component': TEXT_INPUT_COMPONENT,
                    },
                },
            },
        },
    }
    app = mk_app(funcs, convention=convention)
    app()

Execute streamlit run render_functions.py in terminal and ...

image

... the convention is applied !

Old Example (using deprecated dispatch_funcs function)

Write a module like this:

# simple.py

def foo(a: int = 0, b: int = 0, c=0):
    """This is foo. It computes something"""
    return (a * b) + c

def bar(x, greeting='hello'):
    """bar greets its input"""
    return f'{greeting} {x}'

def confuser(a: int = 0, x: float = 3.14):
    return (a ** 2) * x

funcs = [foo, bar, confuser]

if __name__ == '__main__':
    from streamlitfront import dispatch_funcs
    app = dispatch_funcs(funcs)
    app()
    
    # ... and you get a browser based app that exposes foo, bar, and confuser

Execute streamlit run simple.py in terminal and ...

image

image

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlitfront-0.1.13.tar.gz (35.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page