Skip to main content

Python interface to TRIPACK and STRIPACK fortran code for triangulation/interpolation in Cartesian coordinates and on a sphere

Project description

Stripy

Docker Cloud Automated build PyPI

pip builds

Conda Deployment

A Python interface to TRIPACK and STRIPACK Fortran code for (constrained) triangulation in Cartesian coordinates and on a sphere. Stripy is an object-oriented package and includes routines from SRFPACK and SSRFPACK for interpolation (nearest neighbor, linear and hermite cubic) and to evaluate derivatives (Renka 1996a,b and 1997a,b).

stripy is bundled with litho1pt0 which is a python interface to the crust 1.0 dataset and the lithospheric part of the litho 1.0 dataset (Laske et al, 2013 and Pasyanos et al, 2014) which both requires and demonstrates the triangulation / searching and interpolation on the sphere that is provided by stripy.

Examples

Sample images created with stripy illustrating the meshing capability: ocean age data can be triangulated on the sphere with no need for points on land. Once stripy ingests your data points, you can sample another dataset to your grid (bathymetry on the right), smooth, find the derivatives of your data, or interpolate to another set of points.

Documentation

There are two matching sets of stripy notebooks - one set for Cartesian Triangulations and one for Spherical Triangulations. For most geographical applications, the spherical triangulations are the natural choice as they expect longitude and latitude coordinates (admittedly in radians). There are some worked examples which use the companion package litho1pt0

Stable code

Bleeding edge code

For previous versions, see the changelog

Installation & Running in the cloud

Binder

Launch the demonstration

Binder

(This is the development branch)

Binder-dev

Citation

DOI

Moresi, L. and Mather, B.R., (2019). Stripy: A Python module for (constrained) triangulation in Cartesian coordinates and on a sphere.. Journal of Open Source Software, 4(38), 1410, https://doi.org/10.21105/joss.01410

Navigation / Notebooks

There are two matching sets of stripy notebooks - one set for Cartesian Triangulations and one for Spherical Triangulations. For most geographical applications, the spherical triangulations are the natural choice as they expect longitude and latitude coordinates (admittedly in radians).

Note: the Cartesian and Spherical notebooks can be obtained / installed from stripy itself as follows:

   python -c 'import stripy; stripy.documentation.install_documentation(path="Notebooks")'

Cartesian

Spherical

Examples

Note, these examples are the notebooks from litho1pt0 which are installed from the package itself:

   python -c 'import litho1pt0; litho1pt0.documentation.install_documentation(path="Notebooks")'

The first three notebooks are an introduction to litho1pt0 that does not explicitly mention stripy but the next two worked examples show how to search, interpolate and plot with the help of stripy routines.

Installation

Dependencies

You will need Python 3.6+. Also, the following packages are required:

Recommended Packages for running the notebooks:

All of which should be available from pip or anaconda (conda-forge) for most platforms.

Installing using pip

You can install stripy using the pip package manager with either version of Python:

python3 -m pip install stripy

All the dependencies will be automatically installed by pip, except for gfortran (or any Fortran compiler). It must be installed in your system before installing stripy with pip.

If you change the Fortran compiler, you may have to add the flags config_fc --fcompiler=<compiler name> when setup.py is run (see docs for numpy.distutils).

Installing with conda

If you use the anaconda packaging system, then you should be able to

conda install -c geo-down-under stripy

Usage

Two classes are included as part of the Stripy package:

  • sTriangulation (Spherical coordinates)
  • Triangulation (Cartesian coordinates)

These classes share similar methods and can be easily interchanged. In addition, there are many helper functions provided for building meshes.

A series of tests are located in the tests subdirectory. In order to perform these tests clone the repository and run pytest:

git checkout https://github.com/underworldcode/stripy.git
cd stripy
pytest -v

References

  1. Laske, G., G. Masters, and Z. Ma (2013), Update on CRUST1. 0—A 1-degree global model of Earth's crust, Geophys Research Abstracts, 15, EGU2013–2658.

  2. Pasyanos, M. E., T. G. Masters, G. Laske, and Z. Ma (2014), LITHO1.0: An updated crust and lithospheric model of the Earth, Journal of Geophysical Research-Solid Earth, 119(3), 2153–2173, doi:10.1002/2013JB010626.

  3. R. J. Renka, "ALGORITHM 751: TRIPACK: A Constrained Two- Dimensional Delaunay Triangulation Package" ACM Trans. Math. Software, Vol. 22, No. 1, 1996, pp. 1-8.

  4. R. J. Renka, "ALGORITHM 752: SRFPACK: Software for Scattered Data Fitting with a Constrained Surface under Tension", ACM Trans. Math. Software, Vol. 22, No. 1, 1996, pp. 9-17.

  5. R. J. Renka, "ALGORITHM 772: STRIPACK: Delaunay Triangulation and Voronoi Diagram on the Surface of a Sphere" ACM Trans. Math. Software, Vol. 23, No. 3, 1997, pp. 416-434.

  6. R. J. Renka, "ALGORITHM 773: SSRFPACK: Interpolation of Scattered Data on the Surface of a Sphere with a Surface under Tension", ACM Trans. Math. Software, Vol. 23, No. 3, 1997, pp. 437-439.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stripy-2.3.3.tar.gz (36.5 MB view details)

Uploaded Source

Built Distributions

stripy-2.3.3-cp312-cp312-win_amd64.whl (18.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

stripy-2.3.3-cp312-cp312-musllinux_1_1_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

stripy-2.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

stripy-2.3.3-cp312-cp312-macosx_10_9_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

stripy-2.3.3-cp311-cp311-win_amd64.whl (18.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

stripy-2.3.3-cp311-cp311-musllinux_1_1_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

stripy-2.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stripy-2.3.3-cp311-cp311-macosx_10_9_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

stripy-2.3.3-cp310-cp310-win_amd64.whl (18.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

stripy-2.3.3-cp310-cp310-musllinux_1_1_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

stripy-2.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stripy-2.3.3-cp310-cp310-macosx_10_9_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stripy-2.3.3-cp39-cp39-win_amd64.whl (18.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

stripy-2.3.3-cp39-cp39-musllinux_1_1_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

stripy-2.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stripy-2.3.3-cp39-cp39-macosx_10_9_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stripy-2.3.3-cp38-cp38-win_amd64.whl (18.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

stripy-2.3.3-cp38-cp38-musllinux_1_1_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

stripy-2.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stripy-2.3.3-cp38-cp38-macosx_10_9_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stripy-2.3.3-cp37-cp37m-win_amd64.whl (18.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

stripy-2.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

stripy-2.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stripy-2.3.3-cp37-cp37m-macosx_10_9_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file stripy-2.3.3.tar.gz.

File metadata

  • Download URL: stripy-2.3.3.tar.gz
  • Upload date:
  • Size: 36.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for stripy-2.3.3.tar.gz
Algorithm Hash digest
SHA256 afc10284f77f901b00fbee4538e1c6541ae4be1db690e474a7bf9249aecc76b2
MD5 470fe3abc84cad36694f86b3cd81c2a9
BLAKE2b-256 3ff39275485c6f138bdc79d78bc9879ee84afb994b1ed9089f741a9c1580eb1b

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: stripy-2.3.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for stripy-2.3.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 51154eb92b99ec707ab6f2830d3a1f9e6005ae09e5e7527856346df8c5d476ba
MD5 db16bb6162696a901a612115ab19954a
BLAKE2b-256 c23bc1cece717a53c8d6168d0cc3db058ab7a7618e8bd15cb366e846c21d4fe9

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7587c8732062b8c6e0651a697e593305a9c09bf379153e32b61d6390aa2dffda
MD5 5f2d6b6614ff562956bc0716ab582601
BLAKE2b-256 87304d018fc2b349b2b0db1480fc23f21519be74b1d8ca106d0abfadd779bd9b

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab2b37036477fc557b299376da1a805a24b2d2dec10e50f7a0bcc91175d0933f
MD5 ebb8d32daeac8859f636da916d953efa
BLAKE2b-256 1e4467854e195c4c3b078ad2c149fb868057cf0a2cff3f069c308a5898c6ab50

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2130ae51904acd435382dfbfc65cf1224b1d69f050f855846ce0988111e5d649
MD5 1af9940919bcebba13e518063385d4f8
BLAKE2b-256 13f350b82093f03af2b468de972994722205fdb60e4731f740c568b71294b181

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stripy-2.3.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for stripy-2.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c316176b9a5bf066b7b5592d18b0be795cd9781c82b889d380893ab74636360e
MD5 14b86559f1216ff4fa7165ed2d538f14
BLAKE2b-256 9d122c3df03fc8cb3615507208c26983e4cb3fa5d897ed192fe6539acf41e6a0

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8196dcf2383b33d0d45c0e45542795fe9597cefd7c7b41c7d44d71f2cfd43ed5
MD5 cab852bd6a89fb91a591b7b1de284884
BLAKE2b-256 fb0a7e018511b584ad7d8da541bfa31d341cf85af823702424a604c2a04bdc4e

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3afe76a08fa4f049c7b45b5e0de88cd8fbb62be4bad80293c291c2a432c9431
MD5 54037e48599b4fc041fcc4275fc76817
BLAKE2b-256 6a9285bc5724a61c7fa61cedfb247e8b5a04105e6ae6bfd93da9f60a7ac23bef

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df655bdc5f9fb7adf6ec99109a72f83654de19c9ab1c9e56095ffe6c6a753fd6
MD5 8eabf8619d20bead27b3722ac532d0fe
BLAKE2b-256 558b4dca3cccb9e63844e1d334b5d769cb2437b83525e176597e7d5c91fdfff8

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stripy-2.3.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for stripy-2.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fe27809d6fb0eada1e3887c50c96d6bec64044735c7ad077e0d5a8c3c748a072
MD5 e28b8cdb8dde291c849d8a789dea1da5
BLAKE2b-256 5121d3fcb86a5f0b934e696868688732d6754ecb671853d7f3cc8fea997b6990

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 120fc07bcb155891e48f04573afd4e3d3542034116913c2eebc4d9125e727dd7
MD5 30bf403be7a373d8ef1acfbecca59b2d
BLAKE2b-256 b8e4f38b1146d45ca8b93f55e2a69fea28c96962b694c663491b526a54fe8dc5

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 169e9489d9f5f0d873bc8cdf6b70fc1bc8974855df70c8d78d151679705cd53a
MD5 f8e455b6f8e47cbcffa84bb3c9032ab4
BLAKE2b-256 8ef55d89c5d82e081b58b78b0ccc0b10fb2c390fd2af9ca5a65e540433fc186d

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 616ce0094f037bada4b927053bf559cd838be23534fde84542022c8f2fcc360b
MD5 42f8fc7d157f4c7d67e904979af3a043
BLAKE2b-256 7e547570741028a034fde7a8e515909ba936577eb592f612e673a975734d9317

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stripy-2.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for stripy-2.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1049be2721253eaf8bc74e201bdfb261e31a9cef3928271ea2d2437d15c68d6e
MD5 c03cd5594145205bf57d1e727d3e5252
BLAKE2b-256 50b8c4bca244c329423227e412cf84703e4ee72ad9204423e752c1a6ca40c481

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 277d7f1cac668bd54a5aad87e661c8ca83d872e54f88b90a3c6111ca718e0187
MD5 073fccce19b651baa35c9dffc25e58c7
BLAKE2b-256 ce549c2dfc1d00672908570ccee574f785c168b1dea0141dfdc05410dc55e060

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae5f4642ab4a9e7797d3ab6a67a3d3d597c6a1d990edc0e76e24df51c9c93476
MD5 d89220235ee8d777ff837fb05b5c1e3f
BLAKE2b-256 4a29cbf8b5663113030070143dd41002c3b11d4fd7ff8ca3154f80634f5551a3

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d686e1f5bdf22f48998923269573fa6bceb5df06e52b5699c929598f39a39294
MD5 1e7e711bc3eb2096439656f0542a6a24
BLAKE2b-256 785769b201e10add6462524d1dd70a7d392496cf73d4207813daf654beed1391

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stripy-2.3.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for stripy-2.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fe8797bd83f22ddf2eef14a9498d752b63de170583d27d307c07ff38cadb6a44
MD5 38163488e942b3b32628dc7c2585efc9
BLAKE2b-256 665425422e90c29198db4730136998e6cf0dcd8d5e881b94d3523582d17cf421

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 53fb7d7e04f2a4fd6f13b35bd0838c55236e457fad962c80ab9da79df0864666
MD5 3dc003aef11a1e161d41530cd69b72b2
BLAKE2b-256 1e87e5b94b0222a057c1b8c357afba05ccb5e745caa517265699583dd2c2d9eb

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4111cd5cb67452cc0bf9bb17cff2f4a49b7d5b8b6681c18719444275fe1bc39f
MD5 dc8508a34c45492b9ee82fc7826fa019
BLAKE2b-256 0e6c865e5dcba346b860f9ca7b3b933202ff056883b5fadf32885f484410325a

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce36738a2726c063464b50ea2dfd055c8e6bf140090cc6f0f681a0feddad81fc
MD5 481c8ea1b29e534583005b7fb1ef4f70
BLAKE2b-256 91d349377beccacc86b655a1c1f40c3cdda654818edaf124987c600dce9a215e

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stripy-2.3.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for stripy-2.3.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ed6a0178c00d56e5715743d46be343baf8ac574a9c9a527834b646e740a163fa
MD5 c163cf1850dfa8fc56d9b944aec2a8d3
BLAKE2b-256 4ce7db1fd0ded80ec1d1266171adec242a63eeac450288b507dfb9fc538e12e8

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1d9a2c42d42bc78e16c0c3ea27cd82d907172025054803ead9d892c99fb339d0
MD5 ffbf167b4798fc82d54277ae8e3042ce
BLAKE2b-256 5c2bc437de6fecb36363ccebb85363de1a237430451ff96505ec5fd31a92dc29

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b8b8bdaac540afd75e1e8496f44df2c5e9214aa7329c02f1056acbb5cafe393
MD5 fc8b89f4400e41b3bc6b0dc2de8b843f
BLAKE2b-256 5e0376befb8e018e15926b517343ab12b3570c7592ede443c17e7d5dea39056b

See more details on using hashes here.

File details

Details for the file stripy-2.3.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stripy-2.3.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d88c8581a0451e8f5d3601dafae6ddc23003da9e6fd9394e711601f35f5d5931
MD5 67cddb11fff765aebfff0c76f92f3409
BLAKE2b-256 5b82a17eebabd2800b658adda7fdbd671ba4ec6fe10309a3d78f6334b09f7057

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page