Skip to main content

An Environment for Evaluating Stubbornness between Agents with Aligned Incentives

Project description

Stubborn: An Environment for Evaluating Stubbornness between Agents with Aligned Incentives

Stubborn is an experiment in the field of multi-agent reinforcement learning. The goal of the experiment is to see whether reinforcement learning agents can learn to communicate important information to each other by fighting with each other, even though they are "on the same side". By running the experiment and generating plots using the commands documented below, you could replicate the results shown in our paper. By modifying the environment rules as defined in the code, you could extend the experiment to investigate this scenario in different ways.

Stubborn will be presented at the Workshop on Rebellion and Disobedience in AI at The International Conference on Autonomous Agents and Multiagent Systems. Read the full paper. Abstract:

Recent research in multi-agent reinforcement learning (MARL) has shown success in learning social behavior and cooperation. Social dilemmas between agents in mixed-sum settings have been studied extensively, but there is little research into social dilemmas in fully cooperative settings, where agents have no prospect of gaining reward at another agent’s expense.

While fully-aligned interests are conducive to cooperation between agents, they do not guarantee it. We propose a measure of "stubbornness" between agents that aims to capture the human social behavior from which it takes its name: a disagreement that is gradually escalating and potentially disastrous. We would like to promote research into the tendency of agents to be stubborn, the reactions of counterpart agents, and the resulting social dynamics.

In this paper we present Stubborn, an environment for evaluating stubbornness between agents with fully-aligned incentives. In our preliminary results, the agents learn to use their partner’s stubbornness as a signal for improving the choices that they make in the environment. Continue reading...

Installation

python3 -m venv "${HOME}/stubborn_env"
source "${HOME}/stubborn_env/bin/activate"
pip3 install stubborn

Documentation

Show list of commands:

python -m stubborn --help

Show arguments and options for a specific command:

python -m stubborn run --help

Basic usage

Running

Run the Stubborn experiment, training agents and evaluating their performance:

python3 -m stubborn run

Plotting

There are two plot commands implemented. Each of them, by default, draws a plot for the very last run that you made.

Draw a plot showing the rewards of both agents as they learn:

python3 -m stubborn plot-reward

plot-reward

Draw a plot showing the insistence of one agent as a function of the other agent's stubbornness, defined as $\zeta_{n,d}$ in the paper:

python3 -m stubborn plot-insistence

plot-insistence

Citing

If you use Stubborn in your research, please cite the accompanying paper:

@article{Rachum2023Stubborn,
  title={Stubborn: An Environment for Evaluating Stubbornness between Agents with Aligned Incentives},
  author={Rachum, Ram and Nakar, Yonatan and Mirsky, Reuth},
  year = {2023},
  journal = {Proceedings of the Workshop on Rebellion and Disobedience in AI at The International Conference on Autonomous Agents and Multiagent Systems}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stubborn-0.0.2.tar.gz (28.2 kB view details)

Uploaded Source

Built Distribution

stubborn-0.0.2-py2.py3-none-any.whl (34.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file stubborn-0.0.2.tar.gz.

File metadata

  • Download URL: stubborn-0.0.2.tar.gz
  • Upload date:
  • Size: 28.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for stubborn-0.0.2.tar.gz
Algorithm Hash digest
SHA256 c2f4ab5b601a8814add252dd1fb9cb1a0d7dded84558645c92e12508e56b7983
MD5 24751584146134a7fec64a63c089e672
BLAKE2b-256 33e75547873198bc91e1f5f172fc110c1f641adba2d66418cb39d81f977f76ee

See more details on using hashes here.

File details

Details for the file stubborn-0.0.2-py2.py3-none-any.whl.

File metadata

  • Download URL: stubborn-0.0.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 34.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for stubborn-0.0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d097e4d20ce4e20677525d3f217eacf3d33488008d09eec1818d0aa3a483595d
MD5 6a3ab9c8e42f5ba2d157633d220b5696
BLAKE2b-256 4e3ad88021ab06f7a5fa301fc097df300ba994e5b540426cd5af82be919b24a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page