Skip to main content

TensorFlow model and data management tool

Project description


StudioML is a model management framework written in Python to help simplify and expedite your model building experience. It was developed to minimize any overhead involved with the scheduling, running, monitoring or mangagement of artifacts of your machine learning experiments in Python without invasion of your code. Nobody wants to spend their time configuring different machines, setting up dependencies, or playing archeology to track down previous model artifacts.

Most of the features are compatible with any Python machine learning framework Keras, TensorFlow, scikit-learn, etc, some extra features are available for Keras and TensorFlow.

StudioML is hosted at More information including detailed documentation can be found at

Use StudioML to:

  • Capture experiment information- Python environment, files, dependencies and logs- without modifying the experiment code.
  • Monitor and organize experiments using a web dashboard that integrates with TensorBoard.
  • Run experiments locally, remotely, or in the cloud (Google Cloud or Amazon EC2)
  • Manage artifacts (persistence?)
  • Perform hyperparameter search
  • Create customizable Python environments for remote workers.

Example usage

Start visualizer:

studio ui

Run your jobs:

studio run

You can see results of your job at Run studio {ui|run} –help for a full list of ui / runner options


pip install studioml from the master pypi repositry:

pip install studioml

or, install the source and development environment for StudioML from the git project directory:

git clone && cd studio && pip install -e .

We recommend setting up a virtual environment, please see

For detailed information about how to setup your own compute resources for use with StudioML please visit

Alpha program instructions

The following instructions only apply to the alpha version of StudioML and specific open source components.

Some runners can make use of the studio software distribution to start projects without any intervention, devops less runners. To include the software distribution, add the tar.gz file to your workspace directory under a dist subdirectory for the runner. Runners supporting software distribution will unroll the software and install it using virtualenv.

Project details

Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
studioml-0.0.1.post12.tar.gz (45.2 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page