Skip to main content

TensorFlow model and data management tool

Project description

.. raw:: html

<p align="center">
<img src="logo.png">
</p>

|Hex.pm| |Build.pm|

Studio is a model management framework written in Python to help simplify and expedite your model building experience. It was developed to minimize the overhead involved with scheduling, running, monitoring and managing artifacts of your machine learning experiments. No one wants to spend their time configuring different machines, setting up dependencies, or playing archeologist to track down previous model artifacts.

Most of the features are compatible with any Python machine learning
framework (`Keras <https://github.com/fchollet/keras>`__,
`TensorFlow <https://github.com/tensorflow/tensorflow>`__,
`PyTorch <https://github.com/pytorch/pytorch>`__,
`scikit-learn <https://github.com/scikit-learn/scikit-learn>`__, etc);
some extra features are available for Keras and TensorFlow.

**Use Studio to:**

* Capture experiment information- Python environment, files, dependencies and logs- without modifying the experiment code.
* Monitor and organize experiments using a web dashboard that integrates with TensorBoard.
* Run experiments locally, remotely, or in the cloud (Google Cloud or Amazon EC2)
* Manage artifacts
* Perform hyperparameter search
* Create customizable Python environments for remote workers.

NOTE: ``studio`` package is compatible with Python 2 and 3!

Example usage
-------------

Start visualizer:

::

studio ui

Run your jobs:

::

studio run train_mnist_keras.py

You can see results of your job at http://127.0.0.1:5000. Run
``studio {ui|run} --help`` for a full list of ui / runner options

Installation
------------

pip install studioml from the master pypi repositry:

::

pip install studioml

Find more `details <docs/installation.rst>`__ on installation methods and the release process.

Authentication
--------------

Currently Studio supports 2 methods of authentication: `email / password <docs/authentication.rst#email--password-authentication>`__ and using a `Google account. <docs/authentication.rst#google-account-authentication>`__ To use studio runner and studio ui in guest
mode, in studio/default\_config.yaml, uncomment "guest: true" under the
database section.

Alternatively, you can set up your own database and configure Studio to
use it. See `setting up database <docs/setup_database.rst>`__. This is a
preferred option if you want to keep your models and artifacts private.


Further reading and cool features
---------------------------------

- `Running experiments remotely <docs/remote_worker.rst>`__

- `Custom Python environments for remote workers <docs/customenv.rst>`__

- `Running experiments in the cloud <docs/cloud.rst>`__

- `Google Cloud setup instructions <docs/gcloud_setup.rst>`__

- `Amazon EC2 setup instructions <docs/ec2_setup.rst>`__

- `Artifact management <docs/artifacts.rst>`__
- `Hyperparameter search <docs/hyperparams.rst>`__
- `Pipelines for trained models <docs/model_pipelines.rst>`__
- `Containerized experiments <docs/containers.rst>`__

.. |Hex.pm| image:: https://img.shields.io/hexpm/l/plug.svg
:target: https://github.com/studioml/studio/blob/master/LICENSE

.. |Build.pm| image:: https://travis-ci.org/studioml/studio.svg?branch=master
:target: https://travis-ci.org/studioml/studio.svg?branch=master

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

studioml-0.0.9.post213.tar.gz (291.8 kB view details)

Uploaded Source

File details

Details for the file studioml-0.0.9.post213.tar.gz.

File metadata

File hashes

Hashes for studioml-0.0.9.post213.tar.gz
Algorithm Hash digest
SHA256 709dbe426a18defe73ace42aef9d1da86058325912613176647e46da16ece890
MD5 ed1c8adcd1db0265ca437c4210f1eaf5
BLAKE2b-256 b54c59ae4549d7ad04fc62f799ce9162e9a15b02cdb0e16410cefce5e645dc44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page