Skip to main content

Python library to accelerate super-resolution research

Project description

StudioSR

StudioSR is a PyTorch library providing implementations of training and evaluation of super-resolution models. StudioSR aims to offer an identical playground for modern super-resolution models so that researchers can readily compare and analyze a new idea. (inspired by PyTorch-StudioGan)

Installation

From PyPI

pip install studiosr

From source (Editable)

git clone https://github.com/veritross/studiosr.git
cd studiosr
python3 -m pip install -e .

Documentation

Documentation along with a quick start guide can be found in the docs/ directory.

Quick Example

$ python -m studiosr --image image.png --scale 4 --model swinir
from studiosr.models import SwinIR
from studiosr.utils import imread, imwrite

model = SwinIR.from_pretrained(scale=4).eval()
image = imread("image.png")
upscaled = model.inference(image)
imwrite("upscaled.png", upscaled)

Benchmark

  • The evaluation metric is PSNR.
  • "+" indicates the result of self-ensemble.
Method Scale Set5 Set14 BSD100 Urban100 Manga109 Training Dataset
VDSR x 4 31.860 28.424 27.431 25.729 29.973 DF2K
VDSR+ x 4 31.950 28.491 27.471 25.809 30.182 DF2K
EDSR x 4 32.452 28.790 27.718 26.635 30.985 DIV2K
EDSR+ x 4 32.612 28.925 27.798 26.859 31.398 DIV2K
RCAN x 4 32.602 28.825 27.739 26.736 31.127 DIV2K
RCAN+ x 4 32.702 28.940 27.821 27.020 31.563 DIV2K
HAN x 4 32.567 28.864 27.771 26.767 31.364 DIV2K
HAN+ x 4 32.689 28.940 27.820 26.935 31.687 DIV2K
SwinIR x 4 32.894 29.066 27.912 27.448 31.947 DF2K
SwinIR+ x 4 32.899 29.117 27.942 27.564 32.147 DF2K
HAT x 4 32.960 29.206 27.974 27.953 32.409 DF2K
HAT+ x 4 33.075 29.253 28.015 28.087 32.600 DF2K
Method Scale Set5 Set14 BSD100 Urban100 Manga109 Training Dataset
VDSR x 3 34.124 30.155 28.990 27.806 33.109 DF2K
VDSR+ x 3 34.227 30.217 29.029 27.896 33.353 DF2K
EDSR x 3 34.617 30.510 29.258 28.809 34.116 DIV2K
EDSR+ x 3 34.739 30.652 29.327 29.029 34.470 DIV2K
RCAN x 3 34.707 30.600 29.297 29.005 34.340 DIV2K
RCAN+ x 3 34.803 30.703 29.362 29.229 34.658 DIV2K
HAN x 3 34.707 30.610 29.299 29.020 34.368 DIV2K
HAN+ x 3 34.802 30.708 29.367 29.240 34.676 DIV2K
SwinIR x 3 34.890 30.905 29.457 29.755 35.029 DF2K
SwinIR+ x 3 34.971 30.960 29.479 29.887 35.166 DF2K
HAT x 3 34.990 31.042 29.522 30.227 35.444 DF2K
HAT+ x 3 35.070 31.092 29.550 30.326 35.571 DF2K
Method Scale Set5 Set14 BSD100 Urban100 Manga109 Training Dataset
VDSR x 2 37.819 33.447 32.102 31.725 38.308 DF2K
VDSR+ x 2 37.891 33.528 32.142 31.836 38.544 DF2K
EDSR x 2 38.096 33.900 32.341 32.948 39.065 DIV2K
EDSR+ x 2 38.184 34.003 32.387 33.129 39.247 DIV2K
RCAN x 2 38.167 34.080 32.376 33.160 39.310 DIV2K
RCAN+ x 2 38.222 34.155 32.419 33.388 39.474 DIV2K
HAN x 2 38.153 34.092 32.370 33.152 39.307 DIV2K
HAN+ x 2 38.210 34.164 32.417 33.383 39.479 DIV2K
SwinIR x 2 38.292 34.371 32.515 33.788 39.773 DF2K
SwinIR+ x 2 38.366 34.525 32.542 33.936 39.861 DF2K
HAT x 2 38.471 34.798 32.590 34.401 40.102 DF2K
HAT+ x 2 38.523 34.765 32.624 34.525 40.196 DF2K

License

StudioSR is an open-source library under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

studiosr-0.1.6-py3-none-any.whl (41.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page