Skip to main content

A simple, typed, commented Pytorch implementation of StyleGAN2.

Project description

StyleGAN2 Pytorch - Typed, Commented, Installable :)

A simple, typed, commented Pytorch implementation of StyleGAN2.

action pypi codecov docs

This implementation is adapted from here. This implementation seems more stable and editable than the over-engineered official implementation.

The focus of this repository is simplicity and readability. If there are any bugs / issues, please kindly let me know or submit a pull request!

Refer to my blog post for an explanation on the custom CUDA kernels. The profiling code to optimize the custom operations is here.

Installation

pip install stylegan2-torch

Training Tips

  1. Use a multi-GPU setup. An RTX 3090 can handle batch size of up to 8 at 1024 resolution. Based on experience, batch size of 8 works but 16 or 32 should be safer.
  2. Use LMDB dataset + SSD storage + multiple dataloader workers (and a big enough prefetch factor to cache at least one batch ahead). You never know how much time you waste on dataloading until you optimize it. For me, that shorted the training time by 30% (more time-saving than the custom CUDA kernels).

Known Issues

Pytorch is known to cause random reboots when using non-deterministic algorithms. Set torch.use_deterministic_algorithms(True) if you encounter that.

To Dos / Won't Dos

  1. Tidy up conv2d_gradfix.py and fused_act.py. These were just copied over from the original repo so they are still ugly and untidy.
  2. Provide pretrained model conversion method (not that hard tbh, just go map the state_dict keys).
  3. Clean up util functions to aid training loop design.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stylegan2-torch-1.2.0.tar.gz (20.3 kB view details)

Uploaded Source

Built Distribution

stylegan2_torch-1.2.0-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file stylegan2-torch-1.2.0.tar.gz.

File metadata

  • Download URL: stylegan2-torch-1.2.0.tar.gz
  • Upload date:
  • Size: 20.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.8.12 Linux/5.11.0-1028-azure

File hashes

Hashes for stylegan2-torch-1.2.0.tar.gz
Algorithm Hash digest
SHA256 7ba7b3285f840292ac899e17fc936253123d739d196bf462e235957fa7647c41
MD5 27412e3a098ab322cc793fbc171b9718
BLAKE2b-256 09c9ecf74625c4276f545241771243adff87b4b0ee95e56030c033b92e441653

See more details on using hashes here.

File details

Details for the file stylegan2_torch-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: stylegan2_torch-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 25.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.8.12 Linux/5.11.0-1028-azure

File hashes

Hashes for stylegan2_torch-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8cd475cf6ddb3aaa93885ebf5700de77ed1b202c9ae4ca07c3e7ebf9a1082432
MD5 97d96a616d6da2ada890cad4df41a4fa
BLAKE2b-256 a45a52cdc6a278b88f7e508b896f6a7ad4c0aea2378250099285ea57235c8bcb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page