Skip to main content

Models for subseasonal forecasting of temperature and precipitation 2-6 weeks in advance.

Project description

Subseasonal Forecasting Toolkit

The subseasonal_toolkit package provides implementations of the subseasonal forecasting ABC model of

Adaptive Bias Correction for Subseasonal Forecasting
Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Judah Cohen, Miruna Oprescu, Ernest Fraenkel, and Lester Mackey. Nature Communications. June 2023.

@article{mouatadid2023adaptive,
	author = {Mouatadid, Soukayna and Orenstein, Paulo and Flaspohler, Genevieve and Cohen, Judah and Oprescu, Miruna and Fraenkel, Ernest and Mackey, Lester},
	journal = {Nature Communications},
	number = {1},
	pages = {3482},
	title = {Adaptive bias correction for improved subseasonal forecasting},
	volume = {14},
	year = {2023}}

and the machine learning models and meteorological baselines of

SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking
Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen, Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, and Lester Mackey. Advances in Neural Information Processing Systems (NeurIPS). Dec. 2023.

@inproceedings{mouatadid2023toolkit,
 author = {Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen, Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, and Lester Mackey},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {A. Globerson and K. Saenko and M. Hardt and S. Levine},
 publisher = {Curran Associates, Inc.},
 title = {SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking},
 volume = {36},
 year = {2023}
}

System Requirements

This package has been tested with the following operating system and Python pairings:

  • macOS Monterey 12.6.3 with Python 3.9.12
  • Linux CentOS 7 with Python 3.7.9

Data to train and evaluate models is made available through the subseasonal_data package. To download data through this package, you will need to have the Azure Storage CLI azcopy installed on your machine.

A complete list of Python dependencies can be found in setup.cfg; these dependencies are required upon installation.

Getting Started

  • Install the subseasonal toolkit package: pip install subseasonal-toolkit
    • Installation completed in under 1 minute with pip 22.2.2 on a 2021 MacBook Pro with 16 GB of RAM running macOS Monterey version 12.6.3.
  • Define the environment variable $SUBSEASONALDATA_PATH to point to your desired data directory; any data files needed by a model will be read from, saved to, or synced with this directory
  • Run the following demo which generates and evaluates Raw CFSv2 precipitation forecasts across the contiguous U.S. for the 2018-2021 std_paper_forecast evaluation period of "Adaptive Bias Correction for Subseasonal Forecasting": python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m raw_cfsv2 --task us_tmp2m_1.5x1.5_34w
    • This demo ran to completion in 7 minutes with Python 3.9.12 on a 2021 MacBook Pro with 16 GB of RAM running macOS Monterey version 12.6.3.
    • Expected outputs
      • A forecast folder models/cfsv2pp/submodel_forecasts/cfsv2pp-debiasFalse_years12_margin0_days1-1_leads15-15_lossmse/us_tmp2m_1.5x1.5_34w/ containing daily forecast files from 20180101 through 20211231
      • A metrics folder eval/metrics/raw_cfsv2/submodel_forecasts/cfsv2pp-debiasFalse_years12_margin0_days1-1_leads15-15_lossmse/us_tmp2m_1.5x1.5_34w/ containing 6 evaluation metrics:
        • lat_lon_error-us_tmp2m_1.5x1.5_34w-std_paper_forecast.h5
        • lat_lon_rmse-us_tmp2m_1.5x1.5_34w-std_paper_forecast.h5
        • lat_lon_skill-us_tmp2m_1.5x1.5_34w-std_paper_forecast.h5
        • rmse-us_tmp2m_1.5x1.5_34w-std_paper_forecast.h5
        • score-us_tmp2m_1.5x1.5_34w-std_paper_forecast.h5
        • skill-us_tmp2m_1.5x1.5_34w-std_paper_forecast.h5

Generating Model Forecasts

The following examples demonstrate how to generate contiguous US forecasts for the target dates evaluated in "Adaptive Bias Correction for Subseasonal Forecasting" or "SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking" using each implemented model.

  • ABC-CCSM4:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each CCSM4++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ccsm4pp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m ccsm4
  • ABC-CFSv2:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each CFSv2++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m cfsv2pp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m cfsv2
  • ABC-ECMWF:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each ECMWF++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ecmwfpp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m ecmwf
  • ABC-FIMr1p1:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each FIMr1p1++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m fimr1p1pp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m fimr1p1
  • ABC-GEFS:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each GEFS++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gefspp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m gefs
  • ABC-GEMS:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each GEMS++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gemspp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m gems
  • ABC-GEOS_v2p1:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each GEOS_v2p1++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m geos_v2p1pp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m geos_v2p1
  • ABC-NESM:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each NESM++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m nesmpp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m nesm
  • ABC-SubX:
    • Generate predictions for each Climatology++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Generate predictions for each SubX++ model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m subx_meanpp
    • Run ABC python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m subx_mean
  • AutoKNN: python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m autoknn
  • CCSM4++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ccsm4pp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m ccsm4pp
  • CFSv2++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m cfsv2pp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m cfsv2pp
  • Climatology: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m climatology
  • Climatology++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m climpp
  • Debiased CFSv2: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_cfsv2
  • Debiased ECMWF Control and Ensemble:
    • First, select your desired source (control or ensemble) for debiasing and forecasting in subseasonal_toolkit/models/deb_ecmwf/selected_submodel.json by setting the forecast_with and debias_with keys as described in deb_ecmwf.ipynb.
    • Then, run the selected model: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_ecmwf
  • Debiased LOESS CFSv2: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_loess_cfsv2
  • Debiased LOESS ECMWF: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_loess_ecmwf
  • Debiased Quantile Mapping CFSv2: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_quantile_cfsv2
  • Debiased Quantile Mapping ECMWF: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_quantile_ecmwf
  • Debiased SubX: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_subx_mean
  • ECMWF++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ecmwfpp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m ecmwfpp
  • FIMr1p1++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m fimr1p1pp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m fimr1p1pp
  • GEFS++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gefspp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m gefspp
  • GEM++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gempp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m gempp
  • GEOS++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m geos_v2p1pp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m geos_v2p1pp
  • Informer: python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m informer
  • LocalBoosting:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -u -b -m localboosting
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper -u -tu -m localboosting
  • MultiLLR: python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m multillr
  • N-BEATS: python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m nbeats
  • NN-A: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m nn-a
  • Online Ensemble: python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m online_learning
  • Persistence: python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m persistence
  • Persistence++ CCSM4: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_ccsm4
  • Persistence++ CFSv2: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_cfsv2
  • Persistence++ ECMWF: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_ecmwf
  • Persistence++ FIMr1p1: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_fimr1p1 -u -e
  • Persistence++ GEFS: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_gefs -u -e
  • Persistence++ GEM: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_gem -u -e
  • Persistence++ GEOS_v2p1: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_geos_v2p1 -u -e
  • Persistence++ NESM: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_nesm -u -e
  • Persistence++ SubX: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_subx_mean -u -e
  • Prophet: python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m prophet
  • Raw CCSM4: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m raw_ccsm4
  • Raw CFSv2: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m raw_cfsv2
  • Raw ECMWF: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m raw_ecmwf
  • Raw FIMr1p1: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m raw_fimr1p1 -u -e
  • Raw GEFS: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m raw_gefs -u -e
  • Raw GEM: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m raw_gem -u -e
  • Raw GEOS_v2p1: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m raw_geos_v2p1 -u -e
  • Raw NESM: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m raw_nesm -u -e
  • Raw SubX: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m raw_subx_mean -u -e
  • Salient2:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -u -b -m salient2
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper -u -tu -m salient2
  • SubX++:
    • First generate predictions for each model configuration python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m subx_meanpp
    • Then select a model configuration using the tuner python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m subx_meanpp
  • Uniform Ensemble: python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m linear_ensemble

For Developers

Installation

After cloning this repository, install from source in editable mode using pip install -e . in this directory or pip install -e path/to/directory from another directory.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

subseasonal_toolkit-0.0.8.tar.gz (64.0 MB view details)

Uploaded Source

Built Distribution

subseasonal_toolkit-0.0.8-py3-none-any.whl (64.5 MB view details)

Uploaded Python 3

File details

Details for the file subseasonal_toolkit-0.0.8.tar.gz.

File metadata

  • Download URL: subseasonal_toolkit-0.0.8.tar.gz
  • Upload date:
  • Size: 64.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for subseasonal_toolkit-0.0.8.tar.gz
Algorithm Hash digest
SHA256 a1504f4ebcdbd0170b185eb732cc73bdb3a51815c557aefeebdc3ffb9889114b
MD5 64e12119793f0b2b7502b60059527aa5
BLAKE2b-256 ddff2d6fb4b7bf522493dfba41592b07abd0657d3f0b1d7110a76aa419435d18

See more details on using hashes here.

File details

Details for the file subseasonal_toolkit-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for subseasonal_toolkit-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 a6e159ce00715c19c868905d6d567074d826c1d5da3c2d469a383fbb73ef04a1
MD5 8050dd8a86fb1ff3bfcc7471654b2f55
BLAKE2b-256 419571c1a699ea6db0f03dc7103cf2ffdefdd4c3b9cd569510548055347b802b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page