API Library for SumAPI with Python
Project description
SumAPI
sumapi is a python framework that makes it easy to use the api product developed by summarify. With the API product, solutions using cutting edge technology are presented to various NLP problems such as sentiment analysis, named entitity recognition, question answering, domain specific classification, zero shot classification.
Installation
You can install the sumapi on your computer by following the instructions below.
pip install sumapi
Usage
Authentication
In order to use the API, you first need to get token with your unique username and password. If you do not have a username and want to test the API, please contact us at info@summarify.io.
from sumapi.auth import auth
api = SumAPI(username='<your_username>', password='<your_password')
# {'access_token': 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX', 'token_type': 'bearer'}
Sentiment Analysis
from sumapi.api import SumAPI
api = SumAPI(username='<your_username>', password='<your_password')
api.sentiment_analysis('Bu harika bir filmdi.', domain='general')
# {'body': 'Bu harika bir filmdi.', 'evaluation': {'label': 'positive', 'score': 0.983938992023468}}
Named Entitity Recognition
from sumapi.api import SumAPI
api = SumAPI(username='<your_username>', password='<your_password')
api.named_entity_recognition("Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a ayak bastı.", domain='general')
#{
# "body": "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a ayak bastı.",
# "evaluation": {
# "text": "Mustafa Kemal Atatürk 19 Mayıs 1919 ' da Samsun ' a ayak bastı . ",
# "labels": [
# [
# 0,
# 7,
# "B-Person",
# 0.9994454979896545
# ],
# [
# 8,
# 13,
# "I-Person",
# 0.999332070350647
# ],
# [
# 14,
# 21,
# "I-Person",
# 0.999338686466217
# ],
# [
# 22,
# 24,
# "B-Date",
# 0.8490145802497864
# ],
# [
# 25,
# 30,
# "I-Date",
# 0.8429246544837952
# ],
# [
# 31,
# 35,
# "I-Date",
# 0.779156506061554
# ],
# [
# 41,
# 47,
# "B-Location",
# 0.9813851118087769
# ]
# ]
# }
#} """
Classification
from sumapi.api import SumAPI
api = SumAPI(username='<your_username>', password='<your_password')
api.classification("GPT-3, Elon Musk ve Sam Altman tarafından kurulan OpenAI'in üzerinde birkaç yıldır çalışma yürüttüğü bir yapay zekâ teknolojisi", domain='general')
# {'body': "GPT-3, Elon Musk ve Sam Altman tarafından kurulan OpenAI'in üzerinde birkaç yıldır çalışma yürüttüğü bir yapay zekâ teknolojisi", 'evaluation': {'label': 'technology', 'score': 0.9983301758766174}}
api.classification('Bankanızdan hiç memnun değilim, kredi ürününüz iyi çalışmıyor.', domain='finance')
# {'body': 'Bankanızdan hiç memnun değilim, kredi ürününüz iyi çalışmıyor.', 'evaluation': {'label': 'kredi'}}
Summarization
from sumapi.api import SumAPI
api = SumAPI(username='<your_username>', password='<your_password')
sample_text = "First of all, numerous software patches must be conducted to keep systems up to date. Cyber attackers that use malware are trying to infiltrate company networks via abusing some undetected vulnerabilities within their software. According to a survey by security company Tripwire, one in three IT professionals said their company was infiltrated through an unpatched vulnerability. Thus, the validity of the patches should be constantly in check. Secondly, the devices that are connected to the network should be frequently monitored. Recognizing requests from devices that are connected to the main network is one of the most important areas of protection against malware. If the monitoring is missed, an evil ransomware gang can detect some vulnerabilities of the remote access doors. The more preferable scenario is having ethical hackers discover those potentially infected computers. Moreover, the most important data should be determined and an effective backup strategy should be implemented. It is very important to operate backups of important data to protect it against cyber attackers. If crypto ransomware enters the system and captures some devices, the data can be restored thanks to a recent backup, and the related devices can become operational in a short time. Yet, the first move of a hacker is almost always to cut access to those backups, so strong protection of those backups is also essential."
api.summarization(text=sample_text, percentage=0.5, domain='SumBasic')
api.summarization(text=sample_text, percentage=0.5, domain='SumComplex')
api.summarization(text=sample_text, word_count=100, domain='SumComplex')
Spell Check
from sumapi.api import SumAPI
api = SumAPI(username='<your_username>', password='<your_password')
api.spell_check('bu hstali cumle duzelexek gibi dutuyor.', domain='general')
#{
# "body": "bu hstali cumle duzelexek gibi dutuyor.",
# "evaluation": {
# "evaluation": "bu hatalı cümle düzelecek gibi duruyor "
# }
#}
Zero Shot Classification
from sumapi.api import SumAPI
api = SumAPI(username='<your_username>', password='<your_password')
api.zero_shot_classification('Bu nasıl bir hizmet, gerçekten rezilsiniz.', categories='talep,şikayet,öneri')
# {'body': 'Bu nasıl bir hizmet, gerçekten rezilsiniz.', 'evaluation': {'sequence': 'Bu nasıl bir hizmet, gerçekten rezilsiniz.', 'labels': ['şikayet', 'öneri', 'talep'], 'scores': [0.97139573097229, 0.8201411962509155, 0.5891757011413574], 'label': 'şikayet'}}
Question Answering
from sumapi.api import SumAPI
api = SumAPI(username='<your_username>', password='<your_password')
context = """ABASIYANIK, Sait Faik. Hikayeci (Adapazarı 23 Kasım 1906-İstanbul 11 Mayıs 1954). İlk öğrenimine Adapazarı’nda Rehber-i Terakki Mektebi’nde başladı. İki yıl kadar Adapazarı İdadisi’nde okudu. İstanbul Erkek Lisesi’nde devam ettiği orta öğrenimini Bursa Lisesi’nde tamamladı (1928). İstanbul Edebiyat Fakültesi’ne iki yıl devam ettikten sonra babasının isteği üzerine iktisat öğrenimi için İsviçre’ye gitti. Kısa süre sonra iktisat öğrenimini bırakarak Lozan’dan Grenoble’a geçti. Üç yıl başıboş bir edebiyat öğrenimi gördükten sonra babası tarafından geri çağrıldı (1933). Bir müddet Halıcıoğlu Ermeni Yetim Mektebi'nde Türkçe grup dersleri öğretmenliği yaptı. Ticarete atıldıysa da tutunamadı. Bir ay Haber gazetesinde adliye muhabirliği yaptı (1942). Babasının ölümü üzerine aileden kalan emlakin geliri ile avare bir hayata başladı. Evlenemedi. Yazları Burgaz adasındaki köşklerinde, kışları Şişli’deki apartmanlarında annesi ile beraber geçen bu fazla içkili bohem hayatı ömrünün sonuna kadar sürdü."""
api.question_answering(context=context, question="Sait Faik nerede doğdu?")
# {'body': 'Sait Faik nerede doğdu?', 'evaluation': {'score': 0.9611985087394714, 'answer': 'Adapazarı'}}
Multi Argument
from sumapi.api import SumAPI
import pandas as pd
api = SumAPI(username='<your_username>', password='<your_password')
df = pd.DataFrame([
{
"body": "Bu güzel bir filmdi.",
"model_name": "sentiment",
"domain": "general"
},
{
"body": "GPT-3, Elon Musk ve Sam Altman tarafından kurulan OpenAI'in üzerinde birkaç yıldır çalışma yürüttüğü bir yapay zekâ teknolojisi..",
"model_name": "classification",
"domain": "general"
},
{
"body": "Bankanızdan hiç memnun değilim, kredi ürününüz iyi çalışmıyor.",
"model_name": "classification",
"domain": "finance"
},
{
"body": "Summarify, 2020 yılında istanbulda kurulmuş bir doğal dil işleme ve yapay zeka şirketidir..",
"model_name": "ner",
"domain": "general"
}])
print(df.head())
api.multi_request(data=df)
#{'evaluations': [{'body': 'Bu güzel bir filmdi.',
# 'evaluation': {'label': 'positive', 'score': 0.9714869260787964}},
# {'body': "GPT-3, Elon Musk ve Sam Altman tarafından kurulan OpenAI'in üzerinde birkaç yıldır çalışma yürüttüğü bir yapay zekâ teknolojisi..",
# 'evaluation': {'label': 'technology', 'score': 0.9982953667640686}},
# {'body': 'Bankanızdan hiç memnun değilim, kredi ürününüz iyi çalışmıyor.',
# 'evaluation': {'label': 'kredi'}},
# {'body': 'Summarify, 2020 yılında istanbulda kurulmuş bir doğal dil işleme ve yapay zeka şirketidir..',
# 'evaluation': {'0': {'word': 'Sum',
# 'score': 0.6308539509773254,
# 'entity': 'B-ORG',
# 'index': 1},
# '1': {'word': '##mar',
# 'score': 0.6408769488334656,
# 'entity': 'I-ORG',
# 'index': 2},
# '2': {'word': '##if',
# 'score': 0.8179663419723511,
# 'entity': 'I-ORG',
# 'index': 3},
# '3': {'word': '##y',
# 'score': 0.5688334703445435,
# 'entity': 'I-ORG',
# 'index': 4},
# '4': {'word': 'istanbul',
# 'score': 0.9028254747390747,
# 'entity': 'B-LOC',
# 'index': 8}}}]}
Licence
SumAPI is licensed under the MIT License - see LICENSE
for more details.
Logo is created by mikicon. Licensed under Creative Commons: By Attribution 3.0 License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sumapi-0.2.7.tar.gz
.
File metadata
- Download URL: sumapi-0.2.7.tar.gz
- Upload date:
- Size: 11.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.6.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7e1bf4496621b03f2886b58c32d49589ed40710adf734b1a32e9306d7aba5133 |
|
MD5 | 3ba736ef8678d143e89c1e709dcdf7ea |
|
BLAKE2b-256 | 22d02fa6d85b756abcfdcd99944c5caecd2738045e29829f05c6257544bfab86 |
File details
Details for the file sumapi-0.2.7-py3-none-any.whl
.
File metadata
- Download URL: sumapi-0.2.7-py3-none-any.whl
- Upload date:
- Size: 11.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.6.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fed9ac43f5d6a666c43b6cea47345d045a34a848e34fee5342d5bee5f63bf687 |
|
MD5 | 79af39ce9e1cad13cd5a9cd3b00eeebe |
|
BLAKE2b-256 | c02cfde9c7d442eb2555ec0d14fd1394494c05b6dbb32fde807b552d9b2cb1aa |