Skip to main content

SumMedia library is a powerful Python package used for extracting and parsing newspaper articles. It simplifies the process of web scraping, article downloading and working with openai API. The plugin enables various functionalities related to news content personalization and categorization.

Project description



GitHub Workflow Status (with event) GitHub License GitHub issues

SumMedia in a News Web package

The SumMedia is a powerful Python tool used for extracting and parsing newspaper articles. It simplifies the process of web scraping, article downloading and working with openai API. The plugin enables various functionalities related to news content personalization and categorization. Here's an overview of its key features and functionalities:

Table of Contents

  1. Article Extraction
  2. SumMedia for Filtering and Categorizing Articles
  3. SumMedia as a Personal Assistant for Reading Articles
  4. SumMedia for Generating Post for Social Media
  5. Multi-language Support

Article Extraction

Download articles from a given URL and extract useful information like the text, authors, publish date, images, videos, and more.

from summedia.fetching_data import (
    get_text,
    get_time_read,
    get_images,
    get_publishing_date,
    get_authors,
    get_title,
    get_movies,
    get_meta_description,
    get_meta_keywords
)

URL = "www.example.url"

text_article = get_text(URL)
time_read = get_time_read(URL, words_per_minute=238)
img_urls = get_images(URL)
publish_date = get_publishing_date(URL)
authors = get_authors(URL)
title = get_title(URL)
movies = get_movies(URL)
meta_description = get_meta_description(URL)
meta_keywords = get_meta_keywords(URL)

Filtering and Categorizing Articles

The work can involve using ChatGPT to analyze and filter news or inappropriate content. You can also develop an algorithm for categorizing articles based on topic, location, date, and other factors.

import os
from summedia.text import Text

txt = Text(api_key=os.environ.get("OPENAI_API_KEY"))
tag_and_categorize_text = txt.tag_and_categorize_text("your text here", model_type="gpt-3.5-turbo-1106")

Personal Assistant for Reading Articles

Browse various news websites, fetch article headlines and brief summaries, and then deliver them in a user-friendly manner.

import os
from summedia.text import Text
from summedia.level import SimplificationLevel

text = Text(api_key=os.environ.get("OPENAI_API_KEY"))
summary_article = text.summarize_text("www.example.url", max_number_words=150, model_type="gpt-3.5-turbo-1106")
analyze_sentiment = text.analyze_sentiment("www.example.url", max_number_words=150, model_type="gpt-3.5-turbo-1106")
to_bullet_list = text.to_bullet_list("www.example.url", model_type="gpt-3.5-turbo-1106")
adjust_text_complexity = text.adjust_text_complexity("www.example.url", level = SimplificationLevel.STUDENT, model_type="gpt-3.5-turbo-1106")

Generating Post for Social Media

Automate posts to Twitter/X and facebook by just specifying the url for article.

import os
from summedia.social_media import SocialMedia

social_media = SocialMedia(api_key=os.environ.get("OPENAI_API_KEY"))

post_to_facebook = social_media.post_to_facebook(
    "your text here", model_type="gpt-3.5-turbo-1106"
)

condense_text_to_tweet = social_media.condense_text_to_tweet(
    "your text here", model_type="gpt-3.5-turbo-1106"
)

Multi-language Support

Handling articles in different languages, making it versatile for international applications. You can also use it as an article translator.

import os
from summedia.text import Text

txt = Text(api_key=os.environ.get("OPENAI_API_KEY"))
translate_text = txt.translate_text("your text here", model_type="gpt-3.5-turbo-1106", language_to_translate="en")

Create your own prompt

Create a prompt tailored to your needs.

import os
from summedia.elastic import ElasticAPIRequester

your_prompt = ElasticAPIRequester(api_key=os.environ.get("OPENAI_API_KEY"))
content_system_prompt = "YOUR SYSTEM PROMPT HERE"
content_user_prompt = "YOUR USER PROMPT HERE"
elastic_prompt_result = your_prompt.elastic_prompt(content_system_prompt, content_user_prompt,  model_type="gpt-3.5-turbo-1106")

Requirements & Costs

You'll need a paid OpenAI account and an API key.

Check out more here: https://openai.com/pricing

Installation

pip install summedia

How to run tests

pytest --cov=summedia

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

summedia-24.2.3.tar.gz (14.7 kB view details)

Uploaded Source

Built Distribution

summedia-24.2.3-py3-none-any.whl (15.9 kB view details)

Uploaded Python 3

File details

Details for the file summedia-24.2.3.tar.gz.

File metadata

  • Download URL: summedia-24.2.3.tar.gz
  • Upload date:
  • Size: 14.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for summedia-24.2.3.tar.gz
Algorithm Hash digest
SHA256 800d20835bae8e1c7d007e52571bb862f509b52dac416c648100f0eabd76bca8
MD5 84334a15def3fc7d338102993b263af0
BLAKE2b-256 341f883bd480a770ce075637b19fab50671bcebee8c8be133512dea04f47c38f

See more details on using hashes here.

File details

Details for the file summedia-24.2.3-py3-none-any.whl.

File metadata

  • Download URL: summedia-24.2.3-py3-none-any.whl
  • Upload date:
  • Size: 15.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for summedia-24.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b07f1ae72a912a4139f3dca53e707d8563f53a26f736734f3521a35595501462
MD5 6509623cf2b0e25769327a240e3d1b09
BLAKE2b-256 b1df7d33cbef690dc62abae6ecb2cd4d3f7a914a5bec1076e0f6d4d5850253af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page