Skip to main content

SumMedia library is a powerful Python package used for extracting and parsing newspaper articles. It simplifies the process of web scraping, article downloading and working with openai API. The plugin enables various functionalities related to news content personalization and categorization.

Project description



GitHub Workflow Status (with event) GitHub License GitHub issues

SumMedia in a News Web package

The SumMedia is a powerful Python tool used for extracting and parsing newspaper articles. It simplifies the process of web scraping, article downloading and working with openai API. The plugin enables various functionalities related to news content personalization and categorization. Here's an overview of its key features and functionalities:

Table of Contents

  1. Article Extraction
  2. SumMedia for Filtering and Categorizing Articles
  3. SumMedia as a Personal Assistant for Reading Articles
  4. SumMedia for Generating Post for Social Media
  5. Multi-language Support

Article Extraction

Download articles from a given URL and extract useful information like the text, authors, publish date, images, videos, and more.

from summedia.fetching_data import (
    get_text,
    get_time_read,
    get_images,
    get_publishing_date,
    get_authors,
    get_title,
    get_movies,
    get_meta_description, 
    get_meta_keywords
)

URL = "www.example.url"

text_article = get_text(URL)
time_read = get_time_read(URL, words_per_minute=238)
img_urls = get_images(URL)
publish_date = get_publishing_date(URL)
authors = get_authors(URL)
title = get_title(URL)
movies = get_movies(URL)
meta_description = get_meta_description(URL)
meta_keywords = get_meta_keywords(URL)

Filtering and Categorizing Articles

The work can involve using ChatGPT to analyze and filter news, removing spam, false information, or inappropriate content. You can also develop an algorithm for categorizing articles based on topic, location, date, and other factors.

import os
from summedia.text import Text

txt = Text(api_key=os.environ.get("OPENAI_API_KEY"))
tag_and_categorize_text = txt.tag_and_categorize_text("your text here", model_type="gpt-3.5-turbo-1106")

Personal Assistant for Reading Articles

Browse various news websites, fetch article headlines and brief summaries, and then deliver them in a user-friendly manner.

import os
from summedia.text import Text
from summedia.level import SimplificationLevel

text = Text(api_key=os.environ.get("OPENAI_API_KEY"))
summary_article = text.summarize_text("www.example.url", max_number_words=150, model_type="gpt-3.5-turbo-1106")
analyze_sentiment = text.analyze_sentiment("www.example.url", model_type="gpt-3.5-turbo-1106")
to_bullet_list = text.to_bullet_list("www.example.url", model_type="gpt-3.5-turbo-1106")
adjust_text_complexity = text.adjust_text_complexity("www.example.url", level = SimplificationLevel.STUDENT, model_type="gpt-3.5-turbo-1106")

Generating Post for Social Media

Automate posts to Twitter/X and facebook by just specifying the url for article.

import os
from summedia.social_media import SocialMedia

social_media = SocialMedia(api_key=os.environ.get("OPENAI_API_KEY"))

post_to_facebook = social_media.post_to_facebook(
    "your text here", model_type="gpt-3.5-turbo-1106"
)

condense_text_to_tweet = social_media.condense_text_to_tweet(
    "your text here", model_type="gpt-3.5-turbo-1106"
)

Multi-language Support

Handling articles in different languages, making it versatile for international applications. You can also use it as an article translator.

import os
from summedia.text import Text

txt = Text(api_key=os.environ.get("OPENAI_API_KEY"))
translate_text = txt.translate_text("your text here", model_type="gpt-3.5-turbo-1106", language_to_translate="en")

Requirements & Costs

You'll need a paid OpenAI account and an API key.

Check out more here: https://openai.com/pricing

Installation

pip install summedia

How to run tests

pytest --cov=summedia

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

summedia-24.1.5.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

summedia-24.1.5-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file summedia-24.1.5.tar.gz.

File metadata

  • Download URL: summedia-24.1.5.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for summedia-24.1.5.tar.gz
Algorithm Hash digest
SHA256 e9e440e6f415e1e5422f6e5ecf8b109377d382e3bc9f2990e0933ad6e667636a
MD5 43d11924f43c7841770cd8840991447d
BLAKE2b-256 1e8be8d07e3afa503cd39258908821304cc071fb3408f624120f6a8b6c56110e

See more details on using hashes here.

File details

Details for the file summedia-24.1.5-py3-none-any.whl.

File metadata

  • Download URL: summedia-24.1.5-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for summedia-24.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2eb071a92b21a55d48276176db938cd1d405e4725660bb2e9a9433fc7ddefcba
MD5 626aee440e12928bc353f37a86c9d331
BLAKE2b-256 2c5986e407ee498f3681691dbde0c4f47b0f2ec48fc2b26655e301f351a76529

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page