Skip to main content

SumMedia library is a powerful Python package used for extracting and parsing newspaper articles. It simplifies the process of web scraping, article downloading and working with openai API. The plugin enables various functionalities related to news content personalization and categorization.

Project description



GitHub Workflow Status (with event) GitHub License GitHub issues

SumMedia in a News Web package

The SumMedia is a powerful Python tool used for extracting and parsing newspaper articles. It simplifies the process of web scraping, article downloading and working with openai API. The plugin enables various functionalities related to news content personalization and categorization. Here's an overview of its key features and functionalities:

Table of Contents

  1. Article Extraction
  2. SumMedia for Filtering and Categorizing Articles
  3. SumMedia as a Personal Assistant for Reading Articles
  4. SumMedia for Generating Post for Social Media
  5. Multi-language Support

Article Extraction

Download articles from a given URL and extract useful information like the text, authors, publish date, images, videos, and more.

from summedia.fetching_data import (
    get_text,
    get_time_read,
    get_images,
    get_publishing_date,
    get_authors,
    get_title,
    get_movies,
    get_meta_description,
    get_meta_keywords
)

URL = "www.example.url"

text_article = get_text(URL)
time_read = get_time_read(URL, words_per_minute=238)
img_urls = get_images(URL)
publish_date = get_publishing_date(URL)
authors = get_authors(URL)
title = get_title(URL)
movies = get_movies(URL)
meta_description = get_meta_description(URL)
meta_keywords = get_meta_keywords(URL)

Filtering and Categorizing Articles

The work can involve using ChatGPT to analyze and filter news or inappropriate content. You can also develop an algorithm for categorizing articles based on topic, location, date, and other factors.

import os
from summedia.text import Text

txt = Text(api_key=os.environ.get("OPENAI_API_KEY"))
tag_and_categorize_text = txt.tag_and_categorize_text("your text here", model_type="gpt-3.5-turbo-1106")

Personal Assistant for Reading Articles

Browse various news websites, fetch article headlines and brief summaries, and then deliver them in a user-friendly manner.

import os
from summedia.text import Text
from summedia.level import SimplificationLevel

text = Text(api_key=os.environ.get("OPENAI_API_KEY"))
summary_article = text.summarize_text("www.example.url", max_number_words=150, model_type="gpt-3.5-turbo-1106")
analyze_sentiment = text.analyze_sentiment("www.example.url", max_number_words=150, model_type="gpt-3.5-turbo-1106")
to_bullet_list = text.to_bullet_list("www.example.url", model_type="gpt-3.5-turbo-1106")
adjust_text_complexity = text.adjust_text_complexity("www.example.url", level = SimplificationLevel.STUDENT, model_type="gpt-3.5-turbo-1106")

Generating Post for Social Media

Automate posts to Twitter/X and facebook by just specifying the url for article.

import os
from summedia.social_media import SocialMedia

social_media = SocialMedia(api_key=os.environ.get("OPENAI_API_KEY"))

post_to_facebook = social_media.post_to_facebook(
    "your text here", model_type="gpt-3.5-turbo-1106"
)

condense_text_to_tweet = social_media.condense_text_to_tweet(
    "your text here", model_type="gpt-3.5-turbo-1106"
)

Multi-language Support

Handling articles in different languages, making it versatile for international applications. You can also use it as an article translator.

import os
from summedia.text import Text

txt = Text(api_key=os.environ.get("OPENAI_API_KEY"))
translate_text = txt.translate_text("your text here", model_type="gpt-3.5-turbo-1106", language_to_translate="en")

Requirements & Costs

You'll need a paid OpenAI account and an API key.

Check out more here: https://openai.com/pricing

Installation

pip install summedia

How to run tests

pytest --cov=summedia

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

summedia-24.1.6.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

summedia-24.1.6-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file summedia-24.1.6.tar.gz.

File metadata

  • Download URL: summedia-24.1.6.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for summedia-24.1.6.tar.gz
Algorithm Hash digest
SHA256 692af523a7bb8039b9581f29c8564f3a44b49fe5b196b82bd515784392520727
MD5 1a004f2cd58579c2685d177c5dfafd7c
BLAKE2b-256 f434bf27591907f0fdf6c8af53bdb89b31b0140384a57bd8a8c5c589d09ed6ec

See more details on using hashes here.

File details

Details for the file summedia-24.1.6-py3-none-any.whl.

File metadata

  • Download URL: summedia-24.1.6-py3-none-any.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for summedia-24.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 4c51381f099eb4b70046d572bcc36555a0a86be921bc0d6cda1d3719ad035a4c
MD5 928e8ab5041aa23cb3f0b7c8725f57b8
BLAKE2b-256 bf29480579aa46db7501cdba86f2116fbf2acd53c337835e614aba5a2b30a6f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page