Describe in detail a pandas DataFrame
Project description
Summo
Summo is a Python package to summarize a dataset information
import summo
import pandas as pd
df = pd.DataFrame(
{
"a": [1, 2, None, 2, None],
"b": [4, 5, 6, 5, None],
"c": ["a", "b", None, "d", None],
}
)
summary = summo.summary(df)
summary
is a dict
that looks like
{
"table": {
"rows": 5,
"columns": 3,
"rows_duplicated": 0,
"rows_all_na_count": 1,
"rows_all_na_pct": 0.2,
},
"columns": {
"a": {
"na_count": 2,
"na_pct": 0.4,
"unique": False,
"dtype": "float64",
"median": 2.0,
"mean": 1.666666,
},
"b": {
"na_count": 1,
"na_pct": 0.2,
"unique": False,
"dtype": "float64",
"median": 5.0,
"mean": 5.0,
},
"c": {
"na_count": 2,
"na_pct": 0.4,
"unique": False,
"dtype": "object",
},
},
}
Installation
pip install summo
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
summo-0.0.6.tar.gz
(4.0 kB
view details)
Built Distribution
summo-0.0.6-py3-none-any.whl
(3.5 kB
view details)
File details
Details for the file summo-0.0.6.tar.gz
.
File metadata
- Download URL: summo-0.0.6.tar.gz
- Upload date:
- Size: 4.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4929bc9f6adfc90eb65797780f0881637aa5088c215b75df83d143d21469b060 |
|
MD5 | a2a3dcb4d2627199c7e9f1add40e27ad |
|
BLAKE2b-256 | 5b2beff8d2ad5b7e712f881b0aab6bae4bb8d915e39d8c42696a1501ce3d12e3 |
File details
Details for the file summo-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: summo-0.0.6-py3-none-any.whl
- Upload date:
- Size: 3.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b361af991c1e2c23e53611f5e8b3cfaae7d8b757005586e9a4a65f19f5a06f5 |
|
MD5 | 33cc614bbf0ee4c02eb38172db8f2c6b |
|
BLAKE2b-256 | e9213da23298a63926a1d3430ab7c65ae24ef36f67528a668a8fb2d979480632 |