Skip to main content

The sumo-experiments library implements a python interface for the Simulation of Urban MObility (SUMO) software.

Project description

Contributors Forks Stargazers Issues Status Version MIT License LinkedIn


Logo

sumo-experiments

The sumo-experiments library implements a python interface for the Simulation of Urban MObility (SUMO) software.

Examples · Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Contributing
  5. License
  6. Contact
  7. Acknowledgments

About The Project

SUMO simulation


The sumo-experiments package aims to provide an ergonomic environment for creating and configuring highly reproducible SUMO simulations.

Creating a SUMO network for a simulation is very time-consuming. Infrastructure and flows have to be defined either using the netedit tool, or by manually creating all the numerous XML configuration files. This complexity also makes it difficult to reproduce experiments taken from scientific papers. The sumo-experiments package aims to solve this problem by deploying a set of tools to define SUMO networks, automatically generate configuration files and launch simulations, directly from Python.

For further information, please refer to the jupyter notebooks in the examples folder, which will guide you through the use of the package.

Getting Started

Prerequisites

This package only work with Debian distributions. Also, you must install SUMO. Please refer to the SUMO installation manual.

Installation

  1. Get the package from the Python Package Index.

    pip install sumo-experiments
    
  2. Check that the $SUMO_HOME environment variable is set. This command must return the value of $SUMO_HOME.

    printenv | grep 'SUMO_HOME'
    

    If the variable is not set, you can add it temporarily with the following command.

    export SUMO_HOME=your_path_to_sumo
    

    To set this variable permanently, write this in the .bashrc file.

Usage

This script is one of the more simple uses of the package. We first instanciate a preset network from preset_networks. This network contains only one intersection, making the junction between two two-way roads, with one lane for each way. Secondly, we instanciate an Experiment with three parameters : - The name of the experiment - A function that defines the infrastructures of the network (nodes, edges, connections, etc) from the preset network - A function that defines the flows of the simulation (vehicle types, density, etc) from the preset network Finally, we run the simulation with the SUMO GUI. We recommand you to use the clean files method to delete all configuration and data files.

from sumo_experiments import Experiment
from sumo_experiments.preset_networks import OneCrossroadNetwork

network = OneCrossroadNetwork()
exp = Experiment('Test', network.generate_infrastructures, network.generate_flows_all_directions)
exp.run(gui=True)
exp.clean_files()

For more examples, please refer to the examples folder

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the LGPL-2.1 License. See LICENSE.txt for more information.

Contact

Jules Bompard - Linkedin - jules.bompard.etu@univ-lille.fr

Project Link: https://github.com/cristal-smac/sumo-experiments

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sumo_experiments-3.4.2.tar.gz (130.3 MB view details)

Uploaded Source

Built Distribution

sumo_experiments-3.4.2-py3-none-any.whl (651.5 kB view details)

Uploaded Python 3

File details

Details for the file sumo_experiments-3.4.2.tar.gz.

File metadata

  • Download URL: sumo_experiments-3.4.2.tar.gz
  • Upload date:
  • Size: 130.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for sumo_experiments-3.4.2.tar.gz
Algorithm Hash digest
SHA256 95698b77001acf1e8b69f8edf2601b9c3064da7b5384a76d8c03a7d117168059
MD5 413b17bbb46320d037b34b80a7df588b
BLAKE2b-256 77b3a0764649a75cdacc31bfad1ae51f6b20dcc531db72e209190587854dff29

See more details on using hashes here.

File details

Details for the file sumo_experiments-3.4.2-py3-none-any.whl.

File metadata

File hashes

Hashes for sumo_experiments-3.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 028e15d39228f511a2b3dc871a4cebb1c59cc7e3047590ce4b7d343ea1dd0c64
MD5 e64a8d8d8f9c754c7bb018b9dd770386
BLAKE2b-256 8c79743f7c9e1377625056a470382b9b8f300c11c2346e04477c7b5e3fa679d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page