This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
`sumproduct <https: pypi.python.org="" pypi="" sumproduct="">`__
========================================================

|Build Status| |Downloads|

An implementation of Belief Propagation for factor graphs, also known as
the sum-product algorithm
(`Reference <http: web4.cs.ucl.ac.uk="" staff="" d.barber="" pmwiki="" pmwiki.php?n="Brml.HomePage">`__).

::

pip install sumproduct

.. figure:: http://f.cl.ly/items/2P021j2y3A2Q191F451h/unnamed0.png
:alt: Simple factor graph

Simple factor graph
The factor graph used in ``test.py`` (image made with
`yEd <http: www.yworks.com="" en="" products_yed_applicationfeatures.html="">`__).

Basic Usage
-----------

Create a factor graph
~~~~~~~~~~~~~~~~~~~~~

::

from sumproduct import Variable, Factor, FactorGraph
import numpy as np

g = FactorGraph(silent=True) # init the graph without message printouts
x1 = Variable('x1', 2) # init a variable with 2 states
x2 = Variable('x2', 3) # init a variable with 3 states
f12 = Factor('f12', np.array([
[0.8,0.2],
[0.2,0.8],
[0.5,0.5]
])) # create a factor, node potential for p(x1 | x2)
# connect the parents to their children
g.add(f12)
g.append('f12', x2) # order must be the same as dimensions in factor potential!
g.append('f12', x1) # note: f12 potential's shape is (3,2), i.e. (x2,x1)

Run Inference
~~~~~~~~~~~~~

sum-product algorithm
^^^^^^^^^^^^^^^^^^^^^

::

>>> g.compute_marginals()
>>> g.nodes['x1'].marginal()
array([ 0.5, 0.5])

Brute force marginalization and conditioning
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The sum-product algorithm can only compute exact marginals for acyclic
graphs. Check against the brute force method (at great computational
expense) if you have a loopy graph.

::

>>> g.brute_force()
>>> g.nodes['x1'].bfmarginal
array([ 0.5, 0.5])

Condition on Observations
^^^^^^^^^^^^^^^^^^^^^^^^^

::

>>> g.observe('x2', 2) # observe state 1 (middle of above f12 potential)
>>> g.compute_marginals(max_iter=500, tolerance=1e-6)
>>> g.nodes['x1'].marginal()
array([ 0.2, 0.8])
>>> g.brute_force()
>>> g.nodes['x1'].bfmarginal
array([ 0.2, 0.8])

Additional Information
^^^^^^^^^^^^^^^^^^^^^^

``sumproduct`` implements a parallel message passing schedule: Message
passing alternates between Factors and Variables sending messages to all
their neighbors until the convergence of marginals.

Check ``test.py`` for a detailed example.

Implementation Details
----------------------

See block comments in the code's methods for details, but the
implementation strategy comes from Chapter 5 of `David Barber's
book <http: web4.cs.ucl.ac.uk="" staff="" d.barber="" pmwiki="" pmwiki.php?n="Brml.HomePage">`__.

.. |Build Status| image:: https://travis-ci.org/ilyakava/sumproduct.svg?branch=master
:target: https://travis-ci.org/ilyakava/sumproduct
.. |Downloads| image:: https://pypip.in/download/sumproduct/badge.svg
:target: https://pypi.python.org/pypi/sumproduct/
Release History

Release History

0.0.6

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.5

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
sumproduct-0.0.6-py2.py3-none-any.whl (9.4 kB) Copy SHA256 Checksum SHA256 2.7 Wheel Dec 31, 2014
sumproduct-0.0.6.tar.gz (7.9 kB) Copy SHA256 Checksum SHA256 Source Dec 31, 2014

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting