Skip to main content

The sum-product algorithm. Belief propagation (message passing) for factor graphs

Project description

`sumproduct <https://pypi.python.org/pypi/sumproduct>`__
========================================================

|Build Status|

An implementation of Belief Propagation for factor graphs, also known as
the sum-product algorithm
(`Reference <http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage>`__).

::

pip install sumproduct

.. figure:: http://f.cl.ly/items/2P021j2y3A2Q191F451h/unnamed0.png
:alt: Simple factor graph

Simple factor graph
The factor graph used in ``test.py`` (image made with
`yEd <http://www.yworks.com/en/products_yed_applicationfeatures.html>`__).

Basic Usage
-----------

Create a factor graph
~~~~~~~~~~~~~~~~~~~~~

::

from sumproduct import Variable, Factor, FactorGraph
import numpy as np

g = FactorGraph(silent=True) # init the graph without message printouts
x1 = Variable('x1', 2) # init a variable with 2 states
x2 = Variable('x2', 3) # init a variable with 3 states
f12 = Factor('f12', np.array([
[0.8,0.2],
[0.2,0.8],
[0.5,0.5]
])) # create a factor, node potential for p(x1 | x2)
# connect the parents to their children
g.add(f12)
g.append('f12', x2) # order must be the same as dimensions in factor potential!
g.append('f12', x1) # note: f12 potential's shape is (3,2), i.e. (x2,x1)

Run Inference
~~~~~~~~~~~~~

sum-product algorithm
^^^^^^^^^^^^^^^^^^^^^

::

>>> g.compute_marginals()
>>> g.nodes['x1'].marginal()
array([ 0.5, 0.5])

Brute force marginalization and conditioning
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The sum-product algorithm can only compute exact marginals for acyclic
graphs. Check against the brute force method (at great computational
expense) if you have a loopy graph.

::

>>> g.brute_force()
>>> g.nodes['x1'].bfmarginal
array([ 0.5, 0.5])

Condition on Observations
^^^^^^^^^^^^^^^^^^^^^^^^^

::

>>> g.observe('x2', 2) # observe state 1 (middle of above f12 potential)
>>> g.compute_marginals(max_iter=500, tolerance=1e-6)
>>> g.nodes['x1'].marginal()
array([ 0.2, 0.8])
>>> g.brute_force()
>>> g.nodes['x1'].bfmarginal
array([ 0.2, 0.8])

Additional Information
^^^^^^^^^^^^^^^^^^^^^^

``sumproduct`` implements a parallel message passing schedule: Message
passing alternates between Factors and Variables sending messages to all
their neighbors until the convergence of marginals.

Check ``test.py`` for a detailed example.

Implementation Details
----------------------

See block comments in the code's methods for details, but the
implementation strategy comes from Chapter 5 of `David Barber's
book <http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage>`__.

.. |Build Status| image:: https://travis-ci.org/ilyakava/sumproduct.svg?branch=master
:target: https://travis-ci.org/ilyakava/sumproduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sumproduct-0.0.5.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

sumproduct-0.0.5-py2.py3-none-any.whl (9.1 kB view details)

Uploaded Python 2Python 3

File details

Details for the file sumproduct-0.0.5.tar.gz.

File metadata

  • Download URL: sumproduct-0.0.5.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for sumproduct-0.0.5.tar.gz
Algorithm Hash digest
SHA256 51e45634525393cdd0ae8dc3dd75a8e2c4808e0852898a366d0a781483cdf554
MD5 5bef66300085244ada487cf0c7d59a60
BLAKE2b-256 b7288aa07ef3261e19c98d7d051ccc8343d346c20b13c51cf0493040eaf099e9

See more details on using hashes here.

File details

Details for the file sumproduct-0.0.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for sumproduct-0.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c91b05cdf82e4641c8d38f35b2079455d3179a5495f64df251888bc8e91a43cd
MD5 7e37602cb0e694cc7824277204058306
BLAKE2b-256 ede5354eb8a56f455792177eb1a39f102ad19c0b27ca95cfe0013fbe5132b1b5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page