Skip to main content

Music data access

Project description

sung

Music data access. Mainly sources from spotify and wikipedia.

Install

To install: pip install sung

For most tools, you'll also need a spotify

export SPOTIFY_API_CLIENT_ID="your_api_client_id"
export SPOTIFY_API_CLIENT_SECRET="your_api_client_secrete"
export SPOTIPY_REDIRECT_URI="http://localhost:8000/callback"
export SPOTIPY_CLIENT_ID="$SPOTIFY_API_CLIENT_ID"
export SPOTIPY_CLIENT_SECRET="$SPOTIFY_API_CLIENT_SECRET"

Spotify API credentials?

To obtain Spotify API credentials, follow these steps: 1. Create a Spotify Developer Account: • Visit the Spotify Developer Dashboard. • Log in with your Spotify account or create a new one. 2. Register a New Application: • Click on “Create an App.” • Provide an App Name and App Description. • Agree to the Developer Terms of Service. • Click “Create.” 3. Retrieve Client ID and Client Secret: • After creating the app, you’ll be directed to the app’s dashboard. • Here, you’ll find your Client ID and Client Secret. • Keep these credentials secure; they are essential for API authentication. 4. Set Redirect URIs (if applicable): • In your app settings, click “Edit Settings.” • Under “Redirect URIs,” add the URIs where Spotify should redirect after authentication. • This is crucial for certain authorization flows.

For detailed information on authorization flows and using your credentials, refer to Spotify’s Authorization Guide.

Ensure you handle your Client Secret securely and adhere to Spotify’s Developer Terms of Service.

Using the sung.base Module to Search Tracks and Create a Playlist

In this example, we’ll:

  • Search for tracks using Tracks.search.
  • See the search results from the dict-like tracks instance
  • Display the search results in a pandas DataFrame.
  • Create a playlist called "my_test_playlist" with the selected tracks.
  • Get the URL of the newly created playlist.
  • Delete a playlist
  • Instantiate a Playlist object using a URL.
  • Look at audio features aof this playlist

Import the necessary classes from the sung.base module

from sung.base import Tracks, Playlist

Search for tracks with the query 'Love', limiting the results to 7 This will return a Tracks object containing the search results

tracks = Tracks.search(query='Love', limit=7)
list(tracks)
['1vrd6UOGamcKNGnSHJQlSt',
 '3CeCwYWvdfXbZLXFhBrbnf',
 '1dGr1c8CrMLDpV6mPbImSI',
 '0u2P5u6lvoDfwTYjAADbn4',
 '6nGeLlakfzlBcFdZXteDq7',
 '6dBUzqjtbnIa1TwYbyw5CM',
 '7hR22TOX3RorxJPcsz5Wbo']

You can also make a tracks object by passing a list of track IDs or urls

track_ids = [
    '1vrd6UOGamcKNGnSHJQlSt',
    '3CeCwYWvdfXbZLXFhBrbnf',
    '1dGr1c8CrMLDpV6mPbImSI',
    '0u2P5u6lvoDfwTYjAADbn4',
    'https://open.spotify.com/track/6nGeLlakfzlBcFdZXteDq7',  # url
    'https://open.spotify.com/track/6dBUzqjtbnIa1TwYbyw5CM',   # url
    'spotify:track:7hR22TOX3RorxJPcsz5Wbo',  # uri
]

tracks = Tracks(track_ids)

tracks is a Mapping (that means "dict-like"), so you can do what you do with dicts...

Like listing the tracks' keys (IDs)

list(tracks)
['1vrd6UOGamcKNGnSHJQlSt',
 '3CeCwYWvdfXbZLXFhBrbnf',
 '1dGr1c8CrMLDpV6mPbImSI',
 '0u2P5u6lvoDfwTYjAADbn4',
 '6nGeLlakfzlBcFdZXteDq7',
 '6dBUzqjtbnIa1TwYbyw5CM',
 '7hR22TOX3RorxJPcsz5Wbo']

Like Accessing the value of a track for a given key. The value is a bunch of metadata about the track.

track_metadata = tracks['1dGr1c8CrMLDpV6mPbImSI']  # get metadata of track via it's id
assert isinstance(track_metadata, dict)
sorted(track_metadata)
['album',
 'artists',
 'available_markets',
 'disc_number',
 'duration_ms',
 'explicit',
 'external_ids',
 'external_urls',
 'href',
 'id',
 'is_local',
 'name',
 'popularity',
 'preview_url',
 'track_number',
 'type',
 'uri']

But we also have extras over normal dicts.

We can get metadata of a track via it's index:

track_metadata = tracks[2]  # get metadata of track via it's id

We can get a sublist of track metadatas from a list of ids.

list_of_track_metadatas = tracks[['6dBUzqjtbnIa1TwYbyw5CM', '1vrd6UOGamcKNGnSHJQlSt']]  # get metadata of tracks via a list of ids

We can also get a sublist using slicing.

list_of_track_metadatas = tracks[2:4]  # get metadata of tracks via a slice of ids

Display the search results in a pandas DataFrame

The dataframe method converts the track metadata into a DataFrame for easy viewing.

(Note, you can also use the tracks.dataframe(keys, front_columns=...) to retrieve a data table with more control.)

If you have pandas installed, you can get the meta data as a table (dataframe).

tracks.data
name duration_ms popularity explicit id album artists available_markets disc_number external_ids external_urls href is_local preview_url track_number type uri
id
1vrd6UOGamcKNGnSHJQlSt Love Story 235266 62 False 1vrd6UOGamcKNGnSHJQlSt {'album_type': 'album', 'artists': [{'external... [{'external_urls': {'spotify': 'https://open.s... [CA, US] 1 {'isrc': 'USCJY0803275'} {'spotify': 'https://open.spotify.com/track/1v... https://api.spotify.com/v1/tracks/1vrd6UOGamcK... False https://p.scdn.co/mp3-preview/7bc39c6033766fc8... 3 track spotify:track:1vrd6UOGamcKNGnSHJQlSt
3CeCwYWvdfXbZLXFhBrbnf Love Story (Taylor’s Version) 235766 76 False 3CeCwYWvdfXbZLXFhBrbnf {'album_type': 'single', 'artists': [{'externa... [{'external_urls': {'spotify': 'https://open.s... [AR, AU, AT, BE, BO, BR, BG, CA, CL, CO, CR, C... 1 {'isrc': 'USUG12100342'} {'spotify': 'https://open.spotify.com/track/3C... https://api.spotify.com/v1/tracks/3CeCwYWvdfXb... False https://p.scdn.co/mp3-preview/b2c1ed4794591a62... 1 track spotify:track:3CeCwYWvdfXbZLXFhBrbnf
1dGr1c8CrMLDpV6mPbImSI Lover 221306 84 False 1dGr1c8CrMLDpV6mPbImSI {'album_type': 'album', 'artists': [{'external... [{'external_urls': {'spotify': 'https://open.s... [AR, AU, AT, BE, BO, BR, BG, CA, CL, CO, CR, C... 1 {'isrc': 'USUG11901473'} {'spotify': 'https://open.spotify.com/track/1d... https://api.spotify.com/v1/tracks/1dGr1c8CrMLD... False https://p.scdn.co/mp3-preview/aad996e106de5278... 3 track spotify:track:1dGr1c8CrMLDpV6mPbImSI
0u2P5u6lvoDfwTYjAADbn4 lovely (with Khalid) 200185 86 False 0u2P5u6lvoDfwTYjAADbn4 {'album_type': 'single', 'artists': [{'externa... [{'external_urls': {'spotify': 'https://open.s... [AR, AU, AT, BE, BO, BR, BG, CA, CL, CO, CR, C... 1 {'isrc': 'USUM71804190'} {'spotify': 'https://open.spotify.com/track/0u... https://api.spotify.com/v1/tracks/0u2P5u6lvoDf... False https://p.scdn.co/mp3-preview/18b3cbbad11e488c... 1 track spotify:track:0u2P5u6lvoDfwTYjAADbn4
6nGeLlakfzlBcFdZXteDq7 Love Story 316280 74 False 6nGeLlakfzlBcFdZXteDq7 {'album_type': 'album', 'artists': [{'external... [{'external_urls': {'spotify': 'https://open.s... [AR, AU, AT, BE, BO, BR, BG, CA, CL, CO, CR, C... 1 {'isrc': 'FRUM71400048'} {'spotify': 'https://open.spotify.com/track/6n... https://api.spotify.com/v1/tracks/6nGeLlakfzlB... False https://p.scdn.co/mp3-preview/677f771b1fc30024... 3 track spotify:track:6nGeLlakfzlBcFdZXteDq7
6dBUzqjtbnIa1TwYbyw5CM Lovers Rock 213920 85 False 6dBUzqjtbnIa1TwYbyw5CM {'album_type': 'album', 'artists': [{'external... [{'external_urls': {'spotify': 'https://open.s... [AR, AU, AT, BE, BO, BR, BG, CA, CL, CO, CR, C... 1 {'isrc': 'USHM21438143'} {'spotify': 'https://open.spotify.com/track/6d... https://api.spotify.com/v1/tracks/6dBUzqjtbnIa... False https://p.scdn.co/mp3-preview/922a42db5aa8f8d3... 9 track spotify:track:6dBUzqjtbnIa1TwYbyw5CM
7hR22TOX3RorxJPcsz5Wbo Love Somebody 204828 86 False 7hR22TOX3RorxJPcsz5Wbo {'album_type': 'single', 'artists': [{'externa... [{'external_urls': {'spotify': 'https://open.s... [AR, AU, AT, BE, BO, BR, BG, CA, CL, CO, CR, C... 1 {'isrc': 'USUG12406387'} {'spotify': 'https://open.spotify.com/track/7h... https://api.spotify.com/v1/tracks/7hR22TOX3Ror... False https://p.scdn.co/mp3-preview/00b94e332ed40625... 1 track spotify:track:7hR22TOX3RorxJPcsz5Wbo

Make a playlist

Create a new playlist named 'my_test_playlist' with the selected tracks The create_from_track_list class method creates a new playlist with the given tracks

playlist = Playlist.create_from_track_list(
    track_list=selected_track_ids,
    playlist_name='my_test_playlist'
)
print(f"\nPlaylist '{playlist.playlist_id}' created successfully.")
Playlist '7BZcFvIWUnVzvZ5wpVt9cD' created successfully.

Get the playlist URL of the newly created playlist (go check it out!)

playlist.playlist_url
'https://open.spotify.com/playlist/7BZcFvIWUnVzvZ5wpVt9cD'

Delete a playlist

We purposely tried to make deleting a playlist not as easy as the other actions. So we didn't attach a delete method to the playlist instance, but put this in a separate function you have to import. Also, we made that function verbose, and asking for confirmation by default. (But there's arguments to control that, so you can use functools.partial to make your own cowboy (not speaking and not asking for permission) version).

from sung import delete_playlist

delete_playlist(playlist.playlist_id)

Instantiate a Playlist object using a URL. This allows you to interact with the playlist, such as accessing its tracks.

top50_global_url = 'https://open.spotify.com/playlist/37i9dQZEVXbMDoHDwVN2tF?si=d6e0c7bc8f59473b'
top50_playlist = Playlist(top50_global_url)
df = top50_playlist.data
df['first_artist'] = df['artists'].apply(lambda x: x[0]['name'])
df['name_and_first_artist'] = df['name'] + ' - ' + df['first_artist']
top_5_tracks = top50_playlist.data.iloc[:5].name_and_first_artist
top_5_tracks
id
2plbrEY59IikOBgBGLjaoe          Die With A Smile - Lady Gaga
5vNRhkKd0yEAg8suGBpjeY                           APT. - ROSÉ
6dOtVTDdiauQNBQEDOtlAB    BIRDS OF A FEATHER - Billie Eilish
7ne4VBA60CxGM75vw0EYad        That’s So True - Gracie Abrams
7tI8dRuH2Yc6RuoTjxo4dU                           Who - Jimin
Name: name_and_first_artist, dtype: object

Audio features

import pandas as pd

print(f"{top50_playlist.audio_features_df.shape=}")
top50_playlist.audio_features_df.iloc[0]
top50_playlist.audio_features_df.shape=(50, 17)





danceability                                                    0.521
energy                                                          0.592
key                                                                 6
loudness                                                       -7.777
mode                                                                0
speechiness                                                    0.0304
acousticness                                                    0.308
instrumentalness                                                  0.0
liveness                                                        0.122
valence                                                         0.535
tempo                                                         157.969
type                                                   audio_features
uri                              spotify:track:2plbrEY59IikOBgBGLjaoe
track_href          https://api.spotify.com/v1/tracks/2plbrEY59Iik...
analysis_url        https://api.spotify.com/v1/audio-analysis/2plb...
duration_ms                                                    251668
time_signature                                                      3
Name: 2plbrEY59IikOBgBGLjaoe, dtype: object
import seaborn as sns
from matplotlib import pyplot as plt

df = pd.merge(top50_playlist.data, top50_playlist.audio_features_df, left_index=True, right_index=True)
# scatter plot with danceability and energy, colored by popularity, with size as loudness
sns.scatterplot(data=df, x='danceability', y='energy', hue='popularity', size='loudness')

# Move the legend outside the plot
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left');

png

import seaborn as sns

sns.pairplot(top50_playlist.audio_features_df[['danceability', 'energy', 'loudness', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo']])
<seaborn.axisgrid.PairGrid at 0x10ac069b0>

png

Audio analysis

audio_analysis = top50_playlist.audio_analysis(next(iter(top50_playlist)))
type(audio_analysis)
dict
list(audio_analysis)
['meta', 'track', 'bars', 'beats', 'sections', 'segments', 'tatums']
audio_analysis['meta']
{'analyzer_version': '4.0.0',
 'platform': 'Linux',
 'detailed_status': 'OK',
 'status_code': 0,
 'timestamp': 1723785476,
 'analysis_time': 5.78793,
 'input_process': 'libvorbisfile L+R 44100->22050'}
audio_analysis['track']
{'num_samples': 5549270,
 'duration': 251.66757,
 'sample_md5': '',
 'offset_seconds': 0,
 'window_seconds': 0,
 'analysis_sample_rate': 22050,
 'analysis_channels': 1,
 'end_of_fade_in': 0.2034,
 'start_of_fade_out': 241.98096,
 'loudness': -7.863,
 'tempo': 158.005,
 'tempo_confidence': 0.501,
 'time_signature': 3,
 'time_signature_confidence': 1.0,
 'key': 6,
 'key_confidence': 0.253,
 'mode': 0,
 'mode_confidence': 0.452,
 'codestring': 'eJxVmgcC...twbhuw==',
 'code_version': 3.15,
 'echoprintstring': '...',
 'echoprint_version': 4.12,
 'synchstring': 'eJxVWYmR6zoMa8UlSDx09N...EsF7ZvNGhvn5DzGSYaU=',
 'synch_version': 1.0,
 'rhythmstring': 'eJxdnAmSWzkSQ6..._8hOM4=',
 'rhythm_version': 1.0}
from lkj import truncate_dict_values

print(f"{len(audio_analysis['bars'])=})")
truncate_dict_values(audio_analysis['bars'])
len(audio_analysis['bars'])=211)





[{'start': 1.36936, 'duration': 1.1373, 'confidence': 0.506},
 {'start': 2.50666, 'duration': 1.14286, 'confidence': 0.037}]
print(f"{len(audio_analysis['beats'])=})")
truncate_dict_values(audio_analysis['beats'])
len(audio_analysis['beats'])=639)





[{'start': 0.598, 'duration': 0.39454, 'confidence': 0.786},
 {'start': 0.99254, 'duration': 0.37682, 'confidence': 0.461}]
print(f"{len(audio_analysis['sections'])=})")
truncate_dict_values(audio_analysis['sections'])
len(audio_analysis['sections'])=10)




[{'start': 0.0,
  'duration': 9.72348,
  'confidence': 1.0,
  'loudness': -22.269,
  'tempo': 158.348,
  'tempo_confidence': 0.353,
  'key': 1,
  'key_confidence': 0.03,
  'mode': 0,
  'mode_confidence': 0.567,
  'time_signature': 3,
  'time_signature_confidence': 1.0},
 {'start': 9.72348,
  'duration': 29.24311,
  'confidence': 0.606,
  'loudness': -11.712,
  'tempo': 158.114,
  'tempo_confidence': 0.364,
  'key': 9,
  'key_confidence': 0.217,
  'mode': 1,
  'mode_confidence': 0.472,
  'time_signature': 3,
  'time_signature_confidence': 1.0}]
print(f"{len(audio_analysis['segments'])=})")
truncate_dict_values(audio_analysis['segments'])
len(audio_analysis['segments'])=780)





[{'start': 0.0,
  'duration': 0.2034,
  'confidence': 0.0,
  'loudness_start': -60.0,
  'loudness_max_time': 0.0,
  'loudness_max': -60.0,
  'loudness_end': 0.0,
  'pitches': [1.0, 1.0],
  'timbre': [0.0, 171.13]},
 {'start': 0.2034,
  'duration': 0.41234,
  'confidence': 1.0,
  'loudness_start': -60.0,
  'loudness_max_time': 0.05445,
  'loudness_max': -22.196,
  'loudness_end': 0.0,
  'pitches': [0.082, 0.554],
  'timbre': [33.758, 53.096]}]
print(f"{len(audio_analysis['tatums'])=})")
truncate_dict_values(audio_analysis['tatums'])
len(audio_analysis['tatums'])=1278)





[{'start': 0.598, 'duration': 0.19727, 'confidence': 0.786},
 {'start': 0.79527, 'duration': 0.19727, 'confidence': 0.786}]
from lkj import truncate_dict_values

truncate_dict_values(audio_analysis, max_list_size=2)
{'meta': {'analyzer_version': '4.0.0',
  'platform': 'Linux',
  'detailed_status': 'OK',
  'status_code': 0,
  'timestamp': 1476616359,
  'analysis_time': 109.6869,
  'input_process': 'libvorbisfile L+R 44100->22050'},
 'track': {'num_samples': 15594936,
  'duration': 707.25336,
  'sample_md5': '',
  'offset_seconds': 0,
  'window_seconds': 0,
  'analysis_sample_rate': 22050,
  'analysis_channels': 1,
  'end_of_fade_in': 2.82703,
  'start_of_fade_out': 693.6381,
  'loudness': -10.355,
  'tempo': 106.396,
  'tempo_confidence': 0.595,
  'time_signature': 4,
  'time_signature_confidence': 0.904,
  'key': 5,
  'key_confidence': 0.049,
  'mode': 0,
  'mode_confidence': 0.228,
  'codestring': 'eJw1nQmS5LqOBK9SRxB38v4X63BHtv2...y2bmBs1qBYvtiECKLDlx_oH4Y3DGg==',
  'code_version': 3.15,
  'echoprintstring': 'eJzcnQ2u7DhzZLckUaRILkf82_8S5oT...av23MzLxruBTa5AgsAdSL_-A1nrtTE=',
  'echoprint_version': 4.12,
  'synchstring': 'eJx9mAuS5DgIRK_iI1h_6_4XW_IlclV...OPN79PfjNMgH2A-QVgPFZR_AHMBU_o=',
  'synch_version': 1.0,
  'rhythmstring': 'eJyNnVmSJEmOQ68SR9B9uf_FxogHqme...EXgaMRt5h7-gy4yclWmWjb8_wC55QRT',
  'rhythm_version': 1.0},
 'bars': [{'start': 2.64511, 'duration': 2.23768, 'confidence': 0.825},
  {'start': 4.88279, 'duration': 2.16451, 'confidence': 0.352}],
 'beats': [{'start': 0.9181, 'duration': 0.58698, 'confidence': 0.683},
  {'start': 1.50508, 'duration': 0.57369, 'confidence': 0.572}],
 'sections': [{'start': 0.0,
   'duration': 11.51788,
   'confidence': 1.0,
   'loudness': -20.409,
   'tempo': 108.121,
   'tempo_confidence': 0.728,
   'key': 6,
   'key_confidence': 0.162,
   'mode': 1,
   'mode_confidence': 0.478,
   'time_signature': 4,
   'time_signature_confidence': 0.1},
  {'start': 11.51788,
   'duration': 30.61314,
   'confidence': 0.731,
   'loudness': -12.171,
   'tempo': 107.882,
   'tempo_confidence': 0.499,
   'key': 10,
   'key_confidence': 0.429,
   'mode': 0,
   'mode_confidence': 0.387,
   'time_signature': 4,
   'time_signature_confidence': 0.467}],
 'segments': [{'start': 0.0,
   'duration': 0.60957,
   'confidence': 0.0,
   'loudness_start': -60.0,
   'loudness_max_time': 0.5863,
   'loudness_max': -56.103,
   'loudness_end': 0.0,
   'pitches': [0.8, 0.511],
   'timbre': [0.116, 169.016]},
  {'start': 0.60957,
   'duration': 0.60376,
   'confidence': 1.0,
   'loudness_start': -55.895,
   'loudness_max_time': 0.03504,
   'loudness_max': -36.652,
   'loudness_end': 0.0,
   'pitches': [0.434, 0.38],
   'timbre': [13.111, 157.189]}],
 'tatums': [{'start': 0.9181, 'duration': 0.29349, 'confidence': 0.683},
  {'start': 1.21159, 'duration': 0.29349, 'confidence': 0.683}]}

Analyze a playlist

from sung import TracksAnalysis, ensure_playlist_id

Initialize the Class with a Playlist ID

# Let's analyze my daughter's playlist...

playlist = "https://open.spotify.com/playlist/4nEeS47ineUShHK2iAVeO0?si=be16c62b664f43f3"

ta = TracksAnalysis(playlist)

Note that, alternatively, if you already have a dataframe, you can just give TracksAnalysis that. Note that it must have been prepared by TracksAnalysis, or at least satisfy the dataframe conditions on the columns.

# import pandas as pd
# df = pd.read_excel("~/Dropbox/_odata/ai_contexts/misc/music/encore_playlist.xlsx")
# ta = TracksAnalysis(df)

Access the Processed Dataframe

ta.df.head()
name first_artist duration_ms popularity explicit album_release_date album_release_year added_at_date url first_letter ... disc_number external_ids external_urls href is_local track_number type uri preview_url added_at_datetime
181 Love The Way You Lie Eminem 263373 47 False 2010-06-18 2010 2024-11-06 https://open.spotify.com/track/4k5Rb51qsUSMFg6... L ... 1 {'isrc': 'USUM71015443'} {'spotify': 'https://open.spotify.com/track/4k... https://api.spotify.com/v1/tracks/4k5Rb51qsUSM... False 15 track spotify:track:4k5Rb51qsUSMFg6oFdVC48 NaN 2024-11-06T16:01:38Z
180 Without Me Eminem 290120 46 False 2002-05-26 2002 2024-11-03 https://open.spotify.com/track/3Q0kSmKpkffn4aW... W ... 1 {'isrc': 'USIR10211127'} {'spotify': 'https://open.spotify.com/track/3Q... https://api.spotify.com/v1/tracks/3Q0kSmKpkffn... False 10 track spotify:track:3Q0kSmKpkffn4aWkYkWwet NaN 2024-11-03T11:27:58Z
179 Lose Yourself Eminem 320573 50 False 2014-11-24 2014 2024-11-03 https://open.spotify.com/track/2jvHb9SHJDi8Ugk... L ... 2 {'isrc': 'USIR10211570'} {'spotify': 'https://open.spotify.com/track/2j... https://api.spotify.com/v1/tracks/2jvHb9SHJDi8... False 3 track spotify:track:2jvHb9SHJDi8Ugky7tUzUb NaN 2024-11-03T11:27:34Z
178 The Real Slim Shady Eminem 283693 54 False 2005-12-06 2005 2024-11-03 https://open.spotify.com/track/2WXUcFnJPPATncU... T ... 1 {'isrc': 'USIR10000449'} {'spotify': 'https://open.spotify.com/track/2W... https://api.spotify.com/v1/tracks/2WXUcFnJPPAT... False 9 track spotify:track:2WXUcFnJPPATncUkPYC54v NaN 2024-11-03T11:27:15Z
177 Houdini Eminem 227239 57 False 2024-05-30 2024 2024-11-03 https://open.spotify.com/track/6vw2M02LT3otGUo... H ... 1 {'isrc': 'USUG12403399'} {'spotify': 'https://open.spotify.com/track/6v... https://api.spotify.com/v1/tracks/6vw2M02LT3ot... False 1 track spotify:track:6vw2M02LT3otGUoK4ZqHwx NaN 2024-11-03T11:21:18Z

5 rows × 25 columns

Perform Analyses

print(f"Number of songs: {ta.number_of_songs}")
print(f"Number of unique names: {ta.number_of_unique_names}")
Number of songs: 182
Number of unique names: 178

Print Duplicates

ta.print_duplicates()
### Duplicates
|                              |   count |
|:-----------------------------|--------:|
| Houdini                      |       2 |
| Anything You Can Do          |       2 |
| Somebody That I Used to Know |       2 |
| The Bare Necessities         |       2 |

Print Most Popular Songs

ta.print_most_popular_songs(n=20)
| name                                            | first_artist      |   popularity |
|:------------------------------------------------|:------------------|-------------:|
| Espresso                                        | Sabrina Carpenter |           90 |
| exes                                            | Tate McRae        |           83 |
| Sweet Dreams (Are Made of This) - 2005 Remaster | Eurythmics        |           83 |
| Zombie                                          | The Cranberries   |           82 |
| Here Comes The Sun - Remastered 2009            | The Beatles       |           82 |
| Before You Go                                   | Lewis Capaldi     |           81 |
| bad guy                                         | Billie Eilish     |           81 |
| ...Baby One More Time                           | Britney Spears    |           81 |
| Tainted Love                                    | Soft Cell         |           79 |
| Wrecking Ball                                   | Miley Cyrus       |           78 |
| New Rules                                       | Dua Lipa          |           78 |
| Rolling in the Deep                             | Adele             |           77 |
| Kings & Queens                                  | Ava Max           |           77 |
| Easy On Me                                      | Adele             |           77 |
| Roar                                            | Katy Perry        |           77 |
| bellyache                                       | Billie Eilish     |           76 |
| Jolene                                          | Dolly Parton      |           75 |
| Symphony (feat. Zara Larsson)                   | Clean Bandit      |           75 |
| Nice For What                                   | Drake             |           74 |
| bury a friend                                   | Billie Eilish     |           74 |

Print Top Artists

ta.print_top_artists(n=25)
| first_artist       |   count |
|:-------------------|--------:|
| Dua Lipa           |       6 |
| Eminem             |       5 |
| Jacob Collier      |       4 |
| Norris Nuts        |       4 |
| The Beatles        |       4 |
| Hugh Jackman       |       4 |
| Music Together     |       3 |
| Leonard Bernstein  |       3 |
| Julie Andrews      |       3 |
| Walk off the Earth |       3 |
| John Williams      |       3 |
| Billie Eilish      |       3 |
| Anna Kendrick      |       3 |
| Zac Efron          |       2 |
| Clean Bandit       |       2 |
| Adele              |       2 |
| Shakira            |       2 |
| Stromae            |       2 |
| Michael Jackson    |       2 |
| Lin-Manuel Miranda |       2 |
| Caravan Palace     |       2 |
| Queen              |       2 |
| Ynairaly Simo      |       2 |
| Édith Piaf         |       2 |
| Dolly Parton       |       1 |

Plot Number of Songs per Release Year

ta.plot_songs_per_year()
/Users/thorwhalen/.pyenv/versions/3.10.13/envs/p10/lib/python3.10/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 44053 (\N{HANGUL SYLLABLE GANG}) missing from font(s) DejaVu Sans.
  fig.canvas.print_figure(bytes_io, **kw)
/Users/thorwhalen/.pyenv/versions/3.10.13/envs/p10/lib/python3.10/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 45224 (\N{HANGUL SYLLABLE NAM}) missing from font(s) DejaVu Sans.
  fig.canvas.print_figure(bytes_io, **kw)
/Users/thorwhalen/.pyenv/versions/3.10.13/envs/p10/lib/python3.10/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 49828 (\N{HANGUL SYLLABLE SEU}) missing from font(s) DejaVu Sans.
  fig.canvas.print_figure(bytes_io, **kw)
/Users/thorwhalen/.pyenv/versions/3.10.13/envs/p10/lib/python3.10/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 53440 (\N{HANGUL SYLLABLE TA}) missing from font(s) DejaVu Sans.
  fig.canvas.print_figure(bytes_io, **kw)
/Users/thorwhalen/.pyenv/versions/3.10.13/envs/p10/lib/python3.10/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 51068 (\N{HANGUL SYLLABLE IL}) missing from font(s) DejaVu Sans.
  fig.canvas.print_figure(bytes_io, **kw)

png

Plot Added Date vs. Release Date

ta.plot_added_vs_release_dates()

png

ta.plot_added_vs_release_kde()

png

ta.plot_added_vs_release_kde_boundary()

png

Plot First Letter Distribution

ta.plot_first_letter_distribution(sort_by='lexicographical')

png

ta.plot_first_letter_distribution(sort_by='count')

png

Print Top Tracks by Starting Letter

ta.print_top_names_by_letter(n=5)
L (5 tracks):
  - (74) Levitating
  - (73) Livin' la Vida Loca
  - (63) Lucy In The Sky With Diamonds - Remastered 2009
  - (58) La Vie en rose
  - (50) Lose Yourself
W (5 tracks):
  - (78) Wrecking Ball
  - (71) We Don't Talk About Bruno
  - (69) Wellerman - Sea Shanty
  - (69) We Will Rock You - Remastered 2011
  - (64) Wuthering Heights
T (5 tracks):
  - (79) Tainted Love
  - (74) Training Season
  - (70) The Other Side
  - (70) The Greatest Show
  - (70) This Is Me
H (5 tracks):
  - (82) Here Comes The Sun - Remastered 2009
  - (74) Happy Together
  - (57) Houdini
  - (57) Houdini
  - (57) Holocaust
S (5 tracks):
  - (83) Sweet Dreams (Are Made of This) - 2005 Remaster
  - (75) Symphony (feat. Zara Larsson)
  - (74) Somebody That I Used To Know
  - (74) Señorita
  - (71) Super Trouper
N (4 tracks):
  - (78) New Rules
  - (74) Nice For What
  - (63) Night Falls
  - (44) Non, je ne regrette rien
R (5 tracks):
  - (77) Rolling in the Deep
  - (77) Roar
  - (70) Rewrite The Stars
  - (59) Ring My Bell
  - (48) Running Out Of Time
E (4 tracks):
  - (90) Espresso
  - (83) exes
  - (77) Easy On Me
  - (53) Eating the Cats (Donald Trump Remix)
A (5 tracks):
  - (73) Ain't Nobody (Loves Me Better) (feat. Jasmine Thompson)
  - (72) A Million Dreams
  - (53) A Spoonful of Sugar - From "Mary Poppins" / Soundtrack Version
  - (0) Anything You Can Do
  - (29) Away We Go
1 (1 tracks):
  - (19) 10:35
I (5 tracks):
  - (68) I Like To Move It
  - (66) Illusion
  - (65) I'll Be There for You - Theme From "Friends"
  - (47) It's Oh So Quiet
  - (40) Indiana Jones Theme
C (5 tracks):
  - (69) Chandelier
  - (67) Come Alive
  - (62) Crab Rave
  - (53) Coconut
  - (46) Cups - Movie Version
V (1 tracks):
  - (25) Viens
U (1 tracks):
  - (14) Unity
D (5 tracks):
  - (72) Don't Stop Believin'
  - (66) Dance Monkey
  - (62) Drive My Car - Remastered 2009
  - (53) Do-Re-Mi
  - (41) Don't Rain on My Parade
M (5 tracks):
  - (74) MIDDLE OF THE NIGHT
  - (56) Material Girl
  - (49) Mellow Yellow
  - (46) Monster
  - (36) My Baby Just Cares For Me
B (5 tracks):
  - (81) Before You Go
  - (81) bad guy
  - (76) bellyache
  - (74) bury a friend
  - (67) Bad - 2012 Remaster
F (4 tracks):
  - (70) From Now On
  - (65) Friend Like Me
  - (63) Fat Bottomed Girls - Remastered 2011
  - (58) Fever
G (5 tracks):
  - (74) Ghostbusters
  - (73) Get Into It (Yuh)
  - (72) Gangnam Style (강남스타일)
  - (62) Get Back Up Again
  - (59) Greased Lightnin' - From “Grease”
P (3 tracks):
  - (64) Peaches
  - (30) Pink Panther Theme - Remix Version
  - (0) Papaoutai
Y (3 tracks):
  - (65) You Can't Always Get What You Want
  - (49) You Can't Stop The Beat
  - (31) You're No Good - From 'Minions: The Rise of Gru' Soundtrack
Z (1 tracks):
  - (82) Zombie
K (3 tracks):
  - (77) Kings & Queens
  - (58) Karma Chameleon
  - (0) Kung Fu Fighting (From "Kung Fu Panda 3")
O (5 tracks):
  - (64) Oye Como Va
  - (43) One Of A Kind
  - (41) On My Way
  - (40) One More Song
  - (0) Omg - Radio Edit
J (3 tracks):
  - (75) Jolene
  - (43) Je Me Suis Fait Tout Petit
  - (33) Jolie coquine
5 (1 tracks):
  - (30) 5:55
. (1 tracks):
  - (81) ...Baby One More Time
" (1 tracks):
  - (3) "Ellens Gesang III", D839: Ave Maria
# To print all of them, just make n really big
ta.print_top_names_by_letter(n=10_000)
L (12 tracks):
  - (74) Levitating
  - (73) Livin' la Vida Loca
  - (63) Lucy In The Sky With Diamonds - Remastered 2009
  - (58) La Vie en rose
  - (50) Lose Yourself
  - (47) Love The Way You Lie
  - (47) Le café
  - (44) Les cités d'or
  - (39) Little Boxes
  - (35) Lost and Found
  - (34) Lemon Boy - Acappella Version
  - (33) Laisse aller
W (17 tracks):
  - (78) Wrecking Ball
  - (71) We Don't Talk About Bruno
  - (69) We Will Rock You - Remastered 2011
  - (69) Wellerman - Sea Shanty
  - (64) Wuthering Heights
  - (64) Who Let The Dogs Out
  - (48) What Time Is It
  - (46) Without Me
  - (43) West Side Story: Act I: America
  - (35) West Side Story: Act I: Something's Coming
  - (34) West Side Story: Act II: I Feel Pretty
  - (32) We the #Legends
  - (30) We Play All Night Long
  - (22) Winter Ducks Play on Water
  - (6) Waka Waka (This Time for Africa) [The Official 2010 FIFA World Cup (TM) Song] (feat. Freshlyground)
  - (0) Windy (Re-Recorded)
  - (0) Wimoweh (Mbube)
T (16 tracks):
  - (79) Tainted Love
  - (74) Training Season
  - (70) The Other Side
  - (70) The Greatest Show
  - (70) This Is Me
  - (68) Truth Hurts
  - (67) Try Everything
  - (66) The Family Madrigal
  - (57) True Colors - Film Version
  - (56) The Magic Key
  - (54) The Real Slim Shady
  - (48) Time Alone With You (feat. Daniel Caesar)
  - (37) The Bare Necessities
  - (39) The Lonely Goatherd
  - (37) The Bare Necessities
  - (0) The Imperial March (Darth Vader's Theme)
H (8 tracks):
  - (82) Here Comes The Sun - Remastered 2009
  - (74) Happy Together
  - (57) Houdini
  - (57) Houdini
  - (57) Holocaust
  - (31) Here Comes The Sun (feat. dodie)
  - (26) Hello
  - (0) Hello Song
S (21 tracks):
  - (83) Sweet Dreams (Are Made of This) - 2005 Remaster
  - (75) Symphony (feat. Zara Larsson)
  - (74) Señorita
  - (74) Somebody That I Used To Know
  - (71) Super Trouper
  - (70) Solo (feat. Demi Lovato)
  - (68) Scatman (ski-ba-bop-ba-dop-bop)
  - (68) Somewhere Over The Rainbow_What A Wonderful World
  - (68) Surface Pressure
  - (65) Single Ladies (Put a Ring on It)
  - (46) Somebody That I Used to Know
  - (46) Somebody That I Used to Know
  - (36) Scarborough Fair / Canticle - Extended Version
  - (36) Strawberry Fields Forever - Remastered 2009
  - (30) Shape of You
  - (26) Stay Shrimpy
  - (24) Superman March - Alternate Version
  - (24) Sing, Sing, Sing
  - (18) Senza un perchè
  - (0) Suite No.3 In D Major, BWV 1068: 2. Air
  - (0) She Sells Sea Shells
N (4 tracks):
  - (78) New Rules
  - (74) Nice For What
  - (63) Night Falls
  - (44) Non, je ne regrette rien
R (8 tracks):
  - (77) Rolling in the Deep
  - (77) Roar
  - (70) Rewrite The Stars
  - (59) Ring My Bell
  - (48) Running Out Of Time
  - (47) Running with the Wolves - WolfWalkers Version
  - (23) Running Outta Love (feat. Tori Kelly)
  - (0) Ridin' in the Car
E (4 tracks):
  - (90) Espresso
  - (83) exes
  - (77) Easy On Me
  - (53) Eating the Cats (Donald Trump Remix)
A (8 tracks):
  - (73) Ain't Nobody (Loves Me Better) (feat. Jasmine Thompson)
  - (72) A Million Dreams
  - (53) A Spoonful of Sugar - From "Mary Poppins" / Soundtrack Version
  - (0) Anything You Can Do
  - (29) Away We Go
  - (28) All Norris Nuts Songs About Themselves
  - (2) Alors On Danse - Radio Edit
  - (0) Anything You Can Do
1 (1 tracks):
  - (19) 10:35
I (9 tracks):
  - (68) I Like To Move It
  - (66) Illusion
  - (65) I'll Be There for You - Theme From "Friends"
  - (47) It's Oh So Quiet
  - (40) Indiana Jones Theme
  - (35) I Wan'na Be Like You (2016)
  - (34) In My Bones (feat. Kimbra & Tank and The Bangas)
  - (11) I Got You - 1964 Smash Version
  - (0) It's Only A Paper Moon
C (8 tracks):
  - (69) Chandelier
  - (67) Come Alive
  - (62) Crab Rave
  - (53) Coconut
  - (46) Cups - Movie Version
  - (36) C'est de l'eau
  - (22) Chill Jazz
  - (0) Coco Made Me Do It
V (1 tracks):
  - (25) Viens
U (1 tracks):
  - (14) Unity
D (13 tracks):
  - (72) Don't Stop Believin'
  - (66) Dance Monkey
  - (62) Drive My Car - Remastered 2009
  - (53) Do-Re-Mi
  - (41) Don't Rain on My Parade
  - (38) Drop It Like It's Hot - Radio Edit
  - (37) Do The Bartman
  - (35) Dramophone
  - (25) Drive My Car
  - (11) Djevojka Sa Čardaš Nogama
  - (4) Do Your Ears Hang Low?
  - (1) Dragostea Din Tei
  - (0) Duel Of The Fates
M (9 tracks):
  - (74) MIDDLE OF THE NIGHT
  - (56) Material Girl
  - (49) Mellow Yellow
  - (46) Monster
  - (36) My Baby Just Cares For Me
  - (30) My Own Drum (Remix) [with Missy Elliott]
  - (27) Malambo No. 1
  - (10) Mah Na Mah Na
  - (2) Mozart: Horn Concerto No. 4 in E-Flat Major, K. 495: III. Rondo (Allegro vivace)
B (9 tracks):
  - (81) Before You Go
  - (81) bad guy
  - (76) bellyache
  - (74) bury a friend
  - (67) Bad - 2012 Remaster
  - (60) Blood on the Dance Floor
  - (46) Blue (Da Ba Dee)
  - (40) Bizet: Carmen, WD 31, Act 1: Habanera. "L'amour est un oiseau rebelle" (Carmen, Chœur)
  - (39) Baby Mine
F (4 tracks):
  - (70) From Now On
  - (65) Friend Like Me
  - (63) Fat Bottomed Girls - Remastered 2011
  - (58) Fever
G (7 tracks):
  - (74) Ghostbusters
  - (73) Get Into It (Yuh)
  - (72) Gangnam Style (강남스타일)
  - (62) Get Back Up Again
  - (59) Greased Lightnin' - From “Grease”
  - (40) Grand Finale
  - (32) Ghost in the Keys
P (3 tracks):
  - (64) Peaches
  - (30) Pink Panther Theme - Remix Version
  - (0) Papaoutai
Y (3 tracks):
  - (65) You Can't Always Get What You Want
  - (49) You Can't Stop The Beat
  - (31) You're No Good - From 'Minions: The Rise of Gru' Soundtrack
Z (1 tracks):
  - (82) Zombie
K (3 tracks):
  - (77) Kings & Queens
  - (58) Karma Chameleon
  - (0) Kung Fu Fighting (From "Kung Fu Panda 3")
O (6 tracks):
  - (64) Oye Como Va
  - (43) One Of A Kind
  - (41) On My Way
  - (40) One More Song
  - (0) Omg - Radio Edit
  - (0) ooh la la (feat. Greg Nice & DJ Premier)
J (3 tracks):
  - (75) Jolene
  - (43) Je Me Suis Fait Tout Petit
  - (33) Jolie coquine
5 (1 tracks):
  - (30) 5:55
. (1 tracks):
  - (81) ...Baby One More Time
" (1 tracks):
  - (3) "Ellens Gesang III", D839: Ave Maria

The dates table

Just a table with the added_at and album_release dates, along with other metadata, for convenience

ta.dates
album_release_date added_at_date name first_artist name_and_artist
181 2010-06-18 2024-11-06 Love The Way You Lie Eminem Love The Way You Lie -- Eminem
180 2002-05-26 2024-11-03 Without Me Eminem Without Me -- Eminem
179 2014-11-24 2024-11-03 Lose Yourself Eminem Lose Yourself -- Eminem
178 2005-12-06 2024-11-03 The Real Slim Shady Eminem The Real Slim Shady -- Eminem
177 2024-05-30 2024-11-03 Houdini Eminem Houdini -- Eminem
... ... ... ... ... ...
2 2011-01-01 2016-09-07 Mah Na Mah Na Mahna Mahna and The Two Snowths Mah Na Mah Na -- Mahna Mahna and The Two Snowths
5 2012-10-29 2016-09-07 Sing, Sing, Sing The Andrews Sisters Sing, Sing, Sing -- The Andrews Sisters
3 2007-01-01 2016-09-07 My Baby Just Cares For Me Nina Simone My Baby Just Cares For Me -- Nina Simone
1 2015-01-28 2016-08-14 Wimoweh (Mbube) Yma Sumac Wimoweh (Mbube) -- Yma Sumac
0 1997-01-01 2016-08-14 The Imperial March (Darth Vader's Theme) John Williams The Imperial March (Darth Vader's Theme) -- Jo...

182 rows × 5 columns

ta.tracks_grouped_by_year
name_and_artist number_of_songs
album_release_year
1954 [Malambo No. 1 -- Moises Vivanco] 1
1961 [West Side Story: Act II: I Feel Pretty -- Leo... 3
1965 [The Lonely Goatherd -- Julie Andrews, Do-Re-M... 3
1967 [Lucy In The Sky With Diamonds - Remastered 20... 3
1968 [Scarborough Fair / Canticle - Extended Versio... 2
1969 [You Can't Always Get What You Want -- The Rol... 2
1970 [Oye Como Va -- Santana] 1
1971 [Coconut -- Harry Nilsson] 1
1973 [Strawberry Fields Forever - Remastered 2009 -... 1
1974 [Jolene -- Dolly Parton] 1
1977 [We Will Rock You - Remastered 2011 -- Queen] 1
1978 [Greased Lightnin' - From “Grease” -- John Tra... 3
1980 [Super Trouper -- ABBA] 1
1981 [Tainted Love -- Soft Cell] 1
1983 [Les cités d'or -- Le Groupe Apollo, Sweet Dre... 2
1984 [Material Girl -- Madonna] 1
1988 [Drive My Car -- Bobby McFerrin] 1
1989 [Je Me Suis Fait Tout Petit -- Georges Brassen... 2
1990 [Do The Bartman -- The Simpsons] 1
1991 [Mozart: Horn Concerto No. 4 in E-Flat Major, ... 1
1993 [Somewhere Over The Rainbow_What A Wonderful W... 2
1994 [Zombie -- The Cranberries] 1
1995 [Scatman (ski-ba-bop-ba-dop-bop) -- Scatman Jo... 3
1996 [It's Only A Paper Moon -- Ella Fitzgerald] 1
1997 [Blood on the Dance Floor -- Michael Jackson, ... 3
1999 [Livin' la Vida Loca -- Ricky Martin, Anything... 4
2000 [Indiana Jones Theme -- John Williams, Who Let... 3
2001 [Don't Stop Believin' -- Journey] 1
2002 [Without Me -- Eminem, Dragostea Din Tei -- O-... 2
2004 [Drop It Like It's Hot - Radio Edit -- Snoop D... 2
2005 [The Real Slim Shady -- Eminem, Winter Ducks P... 6
2006 [Pink Panther Theme - Remix Version -- Henry M... 1
2007 [What Time Is It -- Zac Efron, You Can't Stop ... 8
2008 [C'est de l'eau -- Les Enfantastiques, I Like ... 6
2010 [Love The Way You Lie -- Eminem, Waka Waka (Th... 3
2011 [Rolling in the Deep -- Adele, Lost and Found ... 4
2012 [Gangnam Style (강남스타일) -- PSY, Somebody That I... 6
2013 [Roar -- Katy Perry, Wrecking Ball -- Miley Cy... 5
2014 [Lose Yourself -- Eminem, I Got You - 1964 Sma... 4
2015 [Cups - Movie Version -- Anna Kendrick, Unity ... 4
2016 [Chill Jazz -- Simon Leonard Thorpe, Ghostbust... 10
2017 [New Rules -- Dua Lipa, The Other Side -- Hugh... 14
2018 [Solo (feat. Demi Lovato) -- Clean Bandit, We ... 6
2019 [We Play All Night Long -- Norris Nuts, Viens ... 14
2020 [All Norris Nuts Songs About Themselves -- Nor... 10
2021 [Stay Shrimpy -- Norris Nuts, Monster -- YOASO... 14
2022 [Don't Rain on My Parade -- Lea Michele, Laiss... 3
2023 [10:35 -- Tiësto, exes -- Tate McRae, Houdini ... 5
2024 [Houdini -- Eminem, Eating the Cats (Donald Tr... 5

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sung-0.0.8.tar.gz (70.3 kB view details)

Uploaded Source

Built Distribution

sung-0.0.8-py3-none-any.whl (46.6 kB view details)

Uploaded Python 3

File details

Details for the file sung-0.0.8.tar.gz.

File metadata

  • Download URL: sung-0.0.8.tar.gz
  • Upload date:
  • Size: 70.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for sung-0.0.8.tar.gz
Algorithm Hash digest
SHA256 fa82ee47bb884af566c4091cb6ba972aa173358a3570dd236b6042d15bf131e2
MD5 3804356f173c89d866ee5baba7abcaca
BLAKE2b-256 e7d6f3e2a42a0d6695aef9a56fbd440968ef2520a0275085a531039e2e57ab4d

See more details on using hashes here.

File details

Details for the file sung-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: sung-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for sung-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 4b4e58daf98d9e69785a82e4b304699d96369501a491d267fb4dc95ab418df83
MD5 514c10a1264944ee2c8127da0efc3b6e
BLAKE2b-256 ef30d30a379e0995b9fb03b88a64f84bfb9c9dcdd22e025e55153c7dd7db5718

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page