Skip to main content

Tokenizer POS-tagger Lemmatizer and Dependency-parser for modern and contemporary Japanese with BERT models

Project description

Current PyPI packages

SuPar-UniDic

Tokenizer, POS-tagger, lemmatizer, and dependency-parser for modern and contemporary Japanese with BERT models.

Basic usage

>>> import suparunidic
>>> nlp=suparunidic.load()
>>> doc=nlp("太郎は花子が読んでいる本を次郎に渡した")
>>> print(type(doc))
<class 'spacy.tokens.doc.Doc'>
>>> print(suparunidic.to_conllu(doc))
1	太郎	タロウ	PROPN	名詞-固有名詞-人名-	_	12	nsubj	_	SpaceAfter=No|Translit=タロー
2			ADP	助詞-係助詞	_	1	case	_	SpaceAfter=No|Translit=
3	花子	ハナコ	PROPN	名詞-固有名詞-人名-	_	5	nsubj	_	SpaceAfter=No|Translit=ハナコ
4			ADP	助詞-格助詞	_	3	case	_	SpaceAfter=No|Translit=
5	読ん	読む	VERB	動詞-一般	_	8	acl	_	SpaceAfter=No|Translit=ヨン
6			SCONJ	助詞-接続助詞	_	5	mark	_	SpaceAfter=No|Translit=
7	いる	居る	AUX	動詞-非自立可能	_	5	aux	_	SpaceAfter=No|Translit=イル
8			NOUN	名詞-普通名詞-一般	_	12	obj	_	SpaceAfter=No|Translit=ホン
9			ADP	助詞-格助詞	_	8	case	_	SpaceAfter=No|Translit=
10	次郎	ジロウ	PROPN	名詞-固有名詞-人名-	_	12	obl	_	SpaceAfter=No|Translit=ジロー
11			ADP	助詞-格助詞	_	10	case	_	SpaceAfter=No|Translit=
12	渡し	渡す	VERB	動詞-一般	_	0	root	_	SpaceAfter=No|Translit=ワタシ
13			AUX	助動詞	_	12	aux	_	SpaceAfter=No|Translit=

>>> import deplacy
>>> deplacy.render(doc,Japanese=True)
太郎 PROPN ═╗<════════╗ nsubj(主語)
   ADP   <          case(格表示)
花子 PROPN ═╗<══╗      nsubj(主語)
   ADP   <         case(格表示)
読ん VERB  ═╗═╗═╝<    acl(連体修飾節)
   SCONJ <        mark(標識)
いる AUX   <══╝       aux(動詞補助成分)
   NOUN  ═╗═════╝<  obj(目的語)
   ADP   <         case(格表示)
次郎 PROPN ═╗<       obl(斜格補語)
   ADP   <        case(格表示)
渡し VERB  ═╗═╝═════╝═╝ ROOT()
   AUX   <           aux(動詞補助成分)
>>> from deplacy.deprelja import deprelja
>>> for b in suparunidic.bunsetu_spans(doc):
...   for t in b.lefts:
...     print(suparunidic.bunsetu_span(t),"->",b,"("+deprelja[t.dep_]+")")
...
花子が -> 読んでいる (主語)
読んでいる -> 本を (連体修飾節)
太郎は -> 渡した (主語)
本を -> 渡した (目的語)
次郎に -> 渡した (斜格補語)

suparunidic.load(UniDic,BERT) loads a natural language processor pipeline, which uses UniDic for tokenizer POS-tagger and lemmatizer, then uses BERT for Biaffine dependency-parser of SuPar. Available UniDic options are:

Available BERT options are:

Installation for Linux

pip3 install suparunidic --user

Installation for Cygwin64

Make sure to get python37-devel python37-pip python37-cython python37-numpy python37-wheel gcc-g++ mingw64-x86_64-gcc-g++ git curl make cmake, and then:

curl -L https://raw.githubusercontent.com/KoichiYasuoka/CygTorch/master/installer/supar.sh | sh
pip3.7 install suparunidic

Benchmarks

Results of 舞姬/雪國/荒野より-Benchmarks

BERT="bert-japanese-aozora6m3m-unidic32k-2m"

舞姬 LAS MLAS BLEX
UniDic="qkana" 84.91 74.07 77.78
UniDic="kindai" 74.77 69.09 69.09
UniDic="kinsei" 83.02 66.67 70.37
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 66.67
UniDic="kinsei" 78.95 67.92 64.15
荒野より LAS MLAS BLEX
UniDic="qkana" 74.35 56.00 56.00
UniDic="kindai" 74.35 53.33 53.33
UniDic="kinsei" 70.83 50.00 47.37

BERT="roberta-large-japanese-aozora"

舞姬 LAS MLAS BLEX
UniDic="qkana" 75.47 58.18 65.45
UniDic="kindai" 75.47 58.18 65.45
UniDic="kinsei" 66.67 52.63 56.14
雪國 LAS MLAS BLEX
UniDic="qkana" 87.50 82.35 78.43
UniDic="kindai" 83.19 78.43 74.51
UniDic="kinsei" 87.50 82.35 74.51
荒野より LAS MLAS BLEX
UniDic="qkana" 80.63 64.94 59.74
UniDic="kindai" 80.63 62.34 57.14
UniDic="kinsei" 78.12 59.74 54.55

BERT="roberta-large-japanese-aozora-char"

舞姬 LAS MLAS BLEX
UniDic="qkana" 79.25 69.09 76.36
UniDic="kindai" 79.25 69.09 76.36
UniDic="kinsei" 68.52 59.65 63.16
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 70.59
UniDic="kinsei" 85.71 78.43 70.59
荒野より LAS MLAS BLEX
UniDic="qkana" 76.44 61.33 61.33
UniDic="kindai" 76.44 61.33 61.33
UniDic="kinsei" 72.92 56.00 56.00

BERT="roberta-base-japanese-aozora"

舞姬 LAS MLAS BLEX
UniDic="qkana" 79.25 65.45 72.73
UniDic="kindai" 79.25 65.45 72.73
UniDic="kinsei" 68.52 60.71 64.29
雪國 LAS MLAS BLEX
UniDic="qkana" 87.50 82.35 78.43
UniDic="kindai" 83.19 78.43 74.51
UniDic="kinsei" 87.50 82.35 74.51
荒野より LAS MLAS BLEX
UniDic="qkana" 76.44 58.67 61.33
UniDic="kindai" 76.44 56.00 58.67
UniDic="kinsei" 73.96 53.33 56.00

BERT="roberta-base-japanese-aozora-char"

舞姬 LAS MLAS BLEX
UniDic="qkana" 83.02 70.37 77.78
UniDic="kindai" 83.02 70.37 77.78
UniDic="kinsei" 74.07 65.45 69.09
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 70.59
UniDic="kinsei" 85.71 78.43 70.59
荒野より LAS MLAS BLEX
UniDic="qkana" 76.44 57.89 57.89
UniDic="kindai" 76.44 55.26 55.26
UniDic="kinsei" 73.96 52.63 52.63

BERT="roberta-small-japanese-aozora"

舞姬 LAS MLAS BLEX
UniDic="qkana" 83.02 72.73 76.36
UniDic="kindai" 83.02 72.73 76.36
UniDic="kinsei" 70.37 60.71 64.29
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 70.59
UniDic="kinsei" 85.71 78.43 70.59
荒野より LAS MLAS BLEX
UniDic="qkana" 74.35 56.00 56.00
UniDic="kindai" 74.35 53.33 53.33
UniDic="kinsei" 71.88 50.67 50.67

BERT="roberta-small-japanese-aozora-char"

舞姬 LAS MLAS BLEX
UniDic="qkana" 77.36 65.45 72.73
UniDic="kindai" 77.36 65.45 72.73
UniDic="kinsei" 70.37 59.65 63.16
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 70.59
UniDic="kinsei" 85.71 78.43 70.59
荒野より LAS MLAS BLEX
UniDic="qkana" 73.30 53.33 53.33
UniDic="kindai" 73.30 50.67 50.67
UniDic="kinsei" 70.83 48.00 48.00

BERT="deberta-large-japanese-aozora"

舞姬 LAS MLAS BLEX
UniDic="qkana" 84.91 74.07 77.78
UniDic="kindai" 76.64 72.73 69.09
UniDic="kinsei" 81.13 66.67 70.37
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 66.67
UniDic="kinsei" 78.95 67.92 64.15
荒野より LAS MLAS BLEX
UniDic="qkana" 77.49 61.33 61.33
UniDic="kindai" 77.49 58.67 58.67
UniDic="kinsei" 73.96 55.26 52.63

BERT="deberta-base-japanese-aozora"

舞姬 LAS MLAS BLEX
UniDic="qkana" 86.79 77.78 77.78
UniDic="kindai" 76.64 72.73 69.09
UniDic="kinsei" 81.13 65.45 65.45
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 83.19 78.43 70.59
UniDic="kinsei" 78.95 67.92 64.15
荒野より LAS MLAS BLEX
UniDic="qkana" 72.25 53.33 53.33
UniDic="kindai" 72.25 50.67 50.67
UniDic="kinsei" 69.79 50.00 47.37

BERT="deberta-small-japanese-aozora"

舞姬 LAS MLAS BLEX
UniDic="qkana" 75.47 60.71 64.29
UniDic="kindai" 67.29 59.65 56.14
UniDic="kinsei" 71.70 50.91 54.55
雪國 LAS MLAS BLEX
UniDic="qkana" 83.93 74.51 70.59
UniDic="kindai" 79.65 70.59 62.75
UniDic="kinsei" 77.19 64.15 60.38
荒野より LAS MLAS BLEX
UniDic="qkana" 75.39 56.00 56.00
UniDic="kindai" 75.39 56.00 56.00
UniDic="kinsei" 71.88 52.63 50.00

BERT="deberta-base-japanese-unidic"

舞姬 LAS MLAS BLEX
UniDic="qkana" 86.79 77.78 77.78
UniDic="kindai" 76.64 72.73 69.09
UniDic="kinsei" 79.25 60.71 60.71
雪國 LAS MLAS BLEX
UniDic="qkana" 83.93 76.00 72.00
UniDic="kindai" 79.65 72.00 64.00
UniDic="kinsei" 77.19 65.38 61.54
荒野より LAS MLAS BLEX
UniDic="qkana" 77.49 61.33 61.33
UniDic="kindai" 77.49 58.67 58.67
UniDic="kinsei" 73.96 55.26 52.63

BERT="bert-base-japanese-char-extended"

舞姬 LAS MLAS BLEX
UniDic="qkana" 81.13 72.73 76.36
UniDic="kindai" 81.13 72.73 76.36
UniDic="kinsei" 68.52 59.65 63.16
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 70.59
UniDic="kinsei" 85.71 78.43 70.59
荒野より LAS MLAS BLEX
UniDic="qkana" 75.39 56.00 56.00
UniDic="kindai" 75.39 53.33 53.33
UniDic="kinsei" 71.88 48.00 48.00

BERT="bert-large-japanese-char-extended"

舞姬 LAS MLAS BLEX
UniDic="qkana" 75.47 64.29 71.43
UniDic="kindai" 75.47 64.29 71.43
UniDic="kinsei" 64.81 55.17 62.07
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 70.59
UniDic="kinsei" 85.71 78.43 70.59
荒野より LAS MLAS BLEX
UniDic="qkana" 78.53 64.00 64.00
UniDic="kindai" 78.53 61.33 61.33
UniDic="kinsei" 76.04 58.67 58.67

BERT="bert-base-japanese-char"

舞姬 LAS MLAS BLEX
UniDic="qkana" 77.36 64.29 71.43
UniDic="kindai" 77.36 64.29 71.43
UniDic="kinsei" 66.67 55.17 58.62
雪國 LAS MLAS BLEX
UniDic="qkana" 78.57 72.00 68.00
UniDic="kindai" 74.34 68.00 64.00
UniDic="kinsei" 78.57 72.00 64.00
荒野より LAS MLAS BLEX
UniDic="qkana" 75.39 58.67 58.67
UniDic="kindai" 75.39 56.00 56.00
UniDic="kinsei" 72.92 53.33 53.33

BERT="bert-base-japanese-whole-word-masking"

舞姬 LAS MLAS BLEX
UniDic="qkana" 73.58 57.14 64.29
UniDic="kindai" 73.58 57.14 64.29
UniDic="kinsei" 64.81 51.72 55.17
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 82.35 78.43
UniDic="kindai" 76.11 73.08 69.23
UniDic="kinsei" 85.71 82.35 74.51
荒野より LAS MLAS BLEX
UniDic="qkana" 73.30 52.63 52.63
UniDic="kindai" 73.30 52.63 52.63
UniDic="kinsei" 69.79 50.00 50.00

BERT="bert-large-japanese"

舞姬 LAS MLAS BLEX
UniDic="qkana" 79.25 65.45 72.73
UniDic="kindai" 79.25 65.45 72.73
UniDic="kinsei" 68.52 56.14 59.65
雪國 LAS MLAS BLEX
UniDic="qkana" 78.57 76.92 73.08
UniDic="kindai" 74.34 73.08 69.23
UniDic="kinsei" 78.57 76.92 69.23
荒野より LAS MLAS BLEX
UniDic="qkana" 78.53 59.74 57.14
UniDic="kindai" 78.53 57.14 54.55
UniDic="kinsei" 77.08 54.55 51.95

BERT="bert-large-japanese-char"

舞姬 LAS MLAS BLEX
UniDic="qkana" 79.25 69.09 72.73
UniDic="kindai" 79.25 69.09 72.73
UniDic="kinsei" 68.52 59.65 63.16
雪國 LAS MLAS BLEX
UniDic="qkana" 80.36 70.59 70.59
UniDic="kindai" 76.11 66.67 66.67
UniDic="kinsei" 80.36 70.59 66.67
荒野より LAS MLAS BLEX
UniDic="qkana" 74.35 53.33 53.33
UniDic="kindai" 74.35 50.67 50.67
UniDic="kinsei" 71.88 48.00 48.00

BERT="roberta-base-japanese"

舞姬 LAS MLAS BLEX
UniDic="qkana" 83.02 72.73 76.36
UniDic="kindai" 83.02 72.73 76.36
UniDic="kinsei" 72.22 63.16 66.67
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 83.19 78.43 74.51
UniDic="kinsei" 85.71 78.43 70.59
荒野より LAS MLAS BLEX
UniDic="qkana" 72.25 51.35 51.35
UniDic="kindai" 72.25 51.35 51.35
UniDic="kinsei" 69.79 48.65 48.65

BERT="roberta-large-japanese"

舞姬 LAS MLAS BLEX
UniDic="qkana" 79.25 65.45 69.09
UniDic="kindai" 69.16 60.71 57.14
UniDic="kinsei" 73.58 50.00 53.57
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 74.51
UniDic="kindai" 81.42 74.51 66.67
UniDic="kinsei" 78.95 67.92 64.15
荒野より LAS MLAS BLEX
UniDic="qkana" 72.25 57.89 57.89
UniDic="kindai" 72.25 55.26 55.26
UniDic="kinsei" 68.75 51.95 49.35

BERT="electra-base-japanese-discriminator"

舞姬 LAS MLAS BLEX
UniDic="qkana" 75.47 61.82 69.09
UniDic="kindai" 75.47 61.82 69.09
UniDic="kinsei" 64.81 52.63 56.14
雪國 LAS MLAS BLEX
UniDic="qkana" 87.50 82.35 78.43
UniDic="kindai" 83.19 78.43 74.51
UniDic="kinsei" 87.50 82.35 74.51
荒野より LAS MLAS BLEX
UniDic="qkana" 73.30 50.67 50.67
UniDic="kindai" 73.30 50.67 50.67
UniDic="kinsei" 70.83 48.00 48.00

BERT="bert-small-japanese"

舞姬 LAS MLAS BLEX
UniDic="qkana" 79.25 62.96 70.37
UniDic="kindai" 79.25 62.96 70.37
UniDic="kinsei" 70.37 57.14 60.71
雪國 LAS MLAS BLEX
UniDic="qkana" 76.79 73.08 69.23
UniDic="kindai" 72.57 69.23 65.38
UniDic="kinsei" 76.79 73.08 65.38
荒野より LAS MLAS BLEX
UniDic="qkana" 72.25 47.37 47.37
UniDic="kindai" 72.25 47.37 47.37
UniDic="kinsei" 69.79 42.67 45.33

BERT="electra-base-japanese-generator"

舞姬 LAS MLAS BLEX
UniDic="qkana" 77.36 64.29 71.43
UniDic="kindai" 77.36 64.29 71.43
UniDic="kinsei" 68.52 58.62 62.07
雪國 LAS MLAS BLEX
UniDic="qkana" 76.79 73.08 69.23
UniDic="kindai" 72.57 69.23 65.38
UniDic="kinsei" 76.79 73.08 65.38
荒野より LAS MLAS BLEX
UniDic="qkana" 69.11 45.33 45.33
UniDic="kindai" 69.11 45.33 45.33
UniDic="kinsei" 66.67 42.67 42.67

BERT="japanese-roberta-base"

舞姬 LAS MLAS BLEX
UniDic="qkana" 73.58 57.14 64.29
UniDic="kindai" 73.58 57.14 64.29
UniDic="kinsei" 64.81 51.72 55.17
雪國 LAS MLAS BLEX
UniDic="qkana" 87.50 82.35 78.43
UniDic="kindai" 83.19 78.43 74.51
UniDic="kinsei" 87.50 82.35 74.51
荒野より LAS MLAS BLEX
UniDic="qkana" 74.35 50.00 47.37
UniDic="kindai" 74.35 47.37 44.74
UniDic="kinsei" 71.88 44.74 42.11

BERT="albert-japanese-v2"

舞姬 LAS MLAS BLEX
UniDic="qkana" 77.36 64.29 71.43
UniDic="kindai" 77.36 64.29 71.43
UniDic="kinsei" 66.67 55.17 58.62
雪國 LAS MLAS BLEX
UniDic="qkana" 76.79 73.08 69.23
UniDic="kindai" 72.57 69.23 65.38
UniDic="kinsei" 76.79 73.08 65.38
荒野より LAS MLAS BLEX
UniDic="qkana" 73.30 51.95 49.35
UniDic="kindai" 73.30 49.35 46.75
UniDic="kinsei" 69.79 46.75 44.16

BERT="albert-base-japanese-v1"

舞姬 LAS MLAS BLEX
UniDic="qkana" 73.58 57.14 64.29
UniDic="kindai" 73.58 57.14 64.29
UniDic="kinsei" 64.81 51.72 55.17
雪國 LAS MLAS BLEX
UniDic="qkana" 76.79 73.08 69.23
UniDic="kindai" 74.34 69.23 65.38
UniDic="kinsei" 76.79 73.08 65.38
荒野より LAS MLAS BLEX
UniDic="qkana" 65.97 42.67 42.67
UniDic="kindai" 65.97 40.00 40.00
UniDic="kinsei" 64.58 39.47 39.47

BERT="electra-small-japanese-discriminator"

舞姬 LAS MLAS BLEX
UniDic="qkana" 73.58 57.14 64.29
UniDic="kindai" 73.58 57.14 64.29
UniDic="kinsei" 62.96 48.28 51.72
雪國 LAS MLAS BLEX
UniDic="qkana" 73.21 69.23 65.38
UniDic="kindai" 70.80 65.38 61.54
UniDic="kinsei" 73.21 69.23 61.54
荒野より LAS MLAS BLEX
UniDic="qkana" 74.35 50.00 47.37
UniDic="kindai" 74.35 50.00 47.37
UniDic="kinsei" 72.92 50.00 47.37

BERT="electra-small-japanese-generator"

舞姬 LAS MLAS BLEX
UniDic="qkana" 73.58 60.71 64.29
UniDic="kindai" 73.58 60.71 64.29
UniDic="kinsei" 66.67 55.17 58.62
雪國 LAS MLAS BLEX
UniDic="qkana" 73.21 69.23 65.38
UniDic="kindai" 70.80 65.38 61.54
UniDic="kinsei" 73.21 69.23 61.54
荒野より LAS MLAS BLEX
UniDic="qkana" 69.11 45.95 45.95
UniDic="kindai" 69.11 43.24 43.24
UniDic="kinsei" 66.67 40.54 40.54

BERT="ku-bert-japanese-large"

舞姬 LAS MLAS BLEX
UniDic="qkana" 77.36 65.45 72.73
UniDic="kindai" 77.36 65.45 72.73
UniDic="kinsei" 64.81 52.63 59.65
雪國 LAS MLAS BLEX
UniDic="qkana" 82.14 74.51 70.59
UniDic="kindai" 81.42 74.51 70.59
UniDic="kinsei" 82.14 74.51 66.67
荒野より LAS MLAS BLEX
UniDic="qkana" 62.83 39.47 42.11
UniDic="kindai" 62.83 36.84 39.47
UniDic="kinsei" 62.50 38.96 41.56

BERT="bert-base-ja-cased"

舞姬 LAS MLAS BLEX
UniDic="qkana" 73.58 58.18 65.45
UniDic="kindai" 73.58 58.18 65.45
UniDic="kinsei" 64.81 52.63 56.14
雪國 LAS MLAS BLEX
UniDic="qkana" 73.21 69.23 65.38
UniDic="kindai" 70.80 65.38 61.54
UniDic="kinsei" 73.21 69.23 61.54
荒野より LAS MLAS BLEX
UniDic="qkana" 63.87 41.56 44.16
UniDic="kindai" 63.87 38.96 41.56
UniDic="kinsei" 61.46 36.36 38.96

BERT="laboro-bert-japanese-large"

舞姬 LAS MLAS BLEX
UniDic="qkana" 71.70 56.14 63.16
UniDic="kindai" 71.70 56.14 63.16
UniDic="kinsei" 62.96 50.85 54.24
雪國 LAS MLAS BLEX
UniDic="qkana" 71.43 65.38 65.38
UniDic="kindai" 67.26 61.54 61.54
UniDic="kinsei" 71.43 65.38 61.54
荒野より LAS MLAS BLEX
UniDic="qkana" 67.02 42.67 42.67
UniDic="kindai" 67.02 40.00 40.00
UniDic="kinsei" 65.62 37.33 37.33

BERT="nict-bert-base-japanese-100k"

舞姬 LAS MLAS BLEX
UniDic="qkana" 67.92 49.12 52.63
UniDic="kindai" 67.92 49.12 52.63
UniDic="kinsei" 57.41 40.68 44.07
雪國 LAS MLAS BLEX
UniDic="qkana" 82.14 74.51 74.51
UniDic="kindai" 81.42 74.51 74.51
UniDic="kinsei" 82.14 74.51 70.59
荒野より LAS MLAS BLEX
UniDic="qkana" 68.06 41.10 43.84
UniDic="kindai" 68.06 38.36 41.10
UniDic="kinsei" 65.62 35.62 38.36

BERT="unihanlm-base"

舞姬 LAS MLAS BLEX
UniDic="qkana" 69.81 52.63 59.65
UniDic="kindai" 69.81 52.63 59.65
UniDic="kinsei" 61.11 47.46 50.85
雪國 LAS MLAS BLEX
UniDic="qkana" 85.71 78.43 78.43
UniDic="kindai" 79.65 70.59 70.59
UniDic="kinsei" 85.71 78.43 74.51
荒野より LAS MLAS BLEX
UniDic="qkana" 61.78 36.36 38.96
UniDic="kindai" 61.78 36.36 38.96
UniDic="kinsei" 60.42 36.36 38.96

BERT="distilbert-base-japanese"

舞姬 LAS MLAS BLEX
UniDic="qkana" 77.36 64.29 71.43
UniDic="kindai" 77.36 64.29 71.43
UniDic="kinsei" 68.52 58.62 62.07
雪國 LAS MLAS BLEX
UniDic="qkana" 73.21 69.23 65.38
UniDic="kindai" 70.80 65.38 61.54
UniDic="kinsei" 73.21 69.23 61.54
荒野より LAS MLAS BLEX
UniDic="qkana" 63.87 34.67 40.00
UniDic="kindai" 63.87 32.00 37.33
UniDic="kinsei" 62.50 34.21 36.84

Author

Koichi Yasuoka (安岡孝一)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

suparunidic-1.4.2-py3-none-any.whl (995.6 kB view details)

Uploaded Python 3

File details

Details for the file suparunidic-1.4.2-py3-none-any.whl.

File metadata

  • Download URL: suparunidic-1.4.2-py3-none-any.whl
  • Upload date:
  • Size: 995.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for suparunidic-1.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6d8034fda7d1738949ca21b5e30a4fa4fb1f4fbcf84ebc1924c47f56c32d2aac
MD5 89486595d68cbd53c25a8b21de7d3d5a
BLAKE2b-256 235eb9f25413a352a4bb38c9dde5aad7dac6013af23d51ff99e97d1b76925de0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page