State-of-the-art image super resolution models for PyTorch.
Project description
super-image
State-of-the-art image super resolution models for PyTorch.
Requirements
super-image requires Python 3.6 or above.
Installation
With pip
:
pip install super-image
Quick Start
Quickly utilise pre-trained models for upscaling your images 2x, 3x and 4x. See the full list of models below.
from super_image import EdsrModel, ImageLoader
from PIL import Image
import requests
url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
image = Image.open(requests.get(url, stream=True).raw)
model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2)
inputs = ImageLoader.load_image(image)
preds = model(inputs)
ImageLoader.save_image(preds, './scaled_2x.png')
ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png')
Pre-trained Models
Pre-trained models are available at various scales and hosted at the awesome huggingface_hub
. By default the models were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).
The leaderboard below shows the PSNR / SSIM metrics for each model at various scales on various test sets (Set5, Set14, BSD100, Urban100). The higher the better.
Scale x2
Rank | Model | Params | Set5 | Set14 | BSD100 | Urban100 |
---|---|---|---|---|---|---|
1 | msrn-bam | 5.9m | 38.02/0.9607 | 33.63/0.9177 | 32.20/0.8998 | 32.08/0.9276 |
2 | edsr-base | 1.5m | 38.02/0.9607 | 33.57/0.9172 | 32.21/0.8999 | 32.04/0.9276 |
Scale x3
Rank | Model | Params | Set5 | Set14 | BSD100 | Urban100 |
---|---|---|---|---|---|---|
1 | msrn-bam | 5.9m | 35.16/0.9410 | 30.97/0.8574 | 29.67/0.8209 | 29.31/0.8737 |
2 | edsr-base | 1.5m | 35.04/0.9403 | 30.93/0.8567 | 29.65/0.8204 | 29.23/0.8723 |
Scale x4
Rank | Model | Params | Set5 | Set14 | BSD100 | Urban100 |
---|---|---|---|---|---|---|
1 | msrn-bam | 5.9m | 32.26/0.8955 | 28.66/0.7829 | 27.61/0.7369 | 26.10/0.7857 |
2 | edsr-base | 1.5m | 32.12/0.8947 | 28.60/0.7815 | 27.61/0.7363 | 26.02/0.7832 |
3 | a2n | 1.0m | 32.07/0.8933 | 28.56/0.7801 | 27.54/0.7342 | 25.89/0.7787 |
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file super-image-0.1.1.tar.gz
.
File metadata
- Download URL: super-image-0.1.1.tar.gz
- Upload date:
- Size: 27.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.7 CPython/3.7.9 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5eb88ace9e5861de76271cec1f8c55f6c41ccc983827c9c7968739943b06e184 |
|
MD5 | 26840ab7c13c974357c1781dbb172a70 |
|
BLAKE2b-256 | 1f9710a5547eec4a4fda563c4ff0ad7eb0962ff9e6ec3d6ceb481278c38d7c01 |
File details
Details for the file super_image-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: super_image-0.1.1-py3-none-any.whl
- Upload date:
- Size: 32.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.7 CPython/3.7.9 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0585616646033282cdfdfa3ac60465bb45af68d4c6f807c9d7ed38b1c96dd208 |
|
MD5 | d079f02b1d3977d86e3970c8ff39d8a4 |
|
BLAKE2b-256 | a274769aae387d300e0b4a2563ebb431f13ceb66e7ab87208de9c1effdae81b1 |