Skip to main content

State-of-the-art image super resolution models for PyTorch.

Project description

super-image

GitHub pypi version

State-of-the-art image super resolution models for PyTorch.

Requirements

super-image requires Python 3.6 or above.

Installation

With pip:

pip install super-image

Quick Start

Quickly utilise pre-trained models for upscaling your images 2x, 3x and 4x. See the full list of models below.

Open In Colab

from super_image import EdsrModel, ImageLoader
from PIL import Image
import requests

url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
image = Image.open(requests.get(url, stream=True).raw)

model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2)
inputs = ImageLoader.load_image(image)
preds = model(inputs)

ImageLoader.save_image(preds, './scaled_2x.png')
ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png')

Pre-trained Models

Pre-trained models are available at various scales and hosted at the awesome huggingface_hub. By default the models were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).

The leaderboard below shows the PSNR / SSIM metrics for each model at various scales on various test sets (Set5, Set14, BSD100, Urban100). The higher the better.

Scale x2

Rank Model Params Set5 Set14 BSD100 Urban100
1 msrn-bam 5.9m 38.02/0.9607 33.63/0.9177 32.20/0.8998 32.08/0.9276
2 edsr-base 1.5m 38.02/0.9607 33.57/0.9172 32.21/0.8999 32.04/0.9276

Scale x3

Rank Model Params Set5 Set14 BSD100 Urban100
1 msrn-bam 5.9m 35.16/0.9410 30.97/0.8574 29.67/0.8209 29.31/0.8737
2 edsr-base 1.5m 35.04/0.9403 30.93/0.8567 29.65/0.8204 29.23/0.8723

Scale x4

Rank Model Params Set5 Set14 BSD100 Urban100
1 msrn-bam 5.9m 32.26/0.8955 28.66/0.7829 27.61/0.7369 26.10/0.7857
2 edsr-base 1.5m 32.12/0.8947 28.60/0.7815 27.61/0.7363 26.02/0.7832
3 a2n 1.0m 32.07/0.8933 28.56/0.7801 27.54/0.7342 25.89/0.7787

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

super-image-0.1.1.tar.gz (27.7 kB view details)

Uploaded Source

Built Distribution

super_image-0.1.1-py3-none-any.whl (32.4 kB view details)

Uploaded Python 3

File details

Details for the file super-image-0.1.1.tar.gz.

File metadata

  • Download URL: super-image-0.1.1.tar.gz
  • Upload date:
  • Size: 27.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.7.9 Windows/10

File hashes

Hashes for super-image-0.1.1.tar.gz
Algorithm Hash digest
SHA256 5eb88ace9e5861de76271cec1f8c55f6c41ccc983827c9c7968739943b06e184
MD5 26840ab7c13c974357c1781dbb172a70
BLAKE2b-256 1f9710a5547eec4a4fda563c4ff0ad7eb0962ff9e6ec3d6ceb481278c38d7c01

See more details on using hashes here.

File details

Details for the file super_image-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: super_image-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 32.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.7.9 Windows/10

File hashes

Hashes for super_image-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0585616646033282cdfdfa3ac60465bb45af68d4c6f807c9d7ed38b1c96dd208
MD5 d079f02b1d3977d86e3970c8ff39d8a4
BLAKE2b-256 a274769aae387d300e0b4a2563ebb431f13ceb66e7ab87208de9c1effdae81b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page