Skip to main content

State-of-the-art image super resolution models for PyTorch.

Project description

super-image

downloads documentation GitHub pypi version demo app

the super-image library's MSRN x4 model

State-of-the-art image super resolution models for PyTorch.

Installation

With pip:

pip install super-image

Demo

Try the various models on your images instantly.

Hugging Face Spaces

Quick Start

Quickly utilise pre-trained models for upscaling your images 2x, 3x and 4x. See the full list of models below.

Open In Colab

from super_image import EdsrModel, ImageLoader
from PIL import Image
import requests

url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
image = Image.open(requests.get(url, stream=True).raw)

model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2)
inputs = ImageLoader.load_image(image)
preds = model(inputs)

ImageLoader.save_image(preds, './scaled_2x.png')
ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png')

Pre-trained Models

Pre-trained models are available at various scales and hosted at the awesome huggingface_hub. By default the models were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).

The leaderboard below shows the PSNR / SSIM metrics for each model at various scales on various test sets (Set5, Set14, BSD100, Urban100). The higher the better. All training was to 1000 epochs (some publications, like a2n, train to >1000 epochs in their experiments).

Scale x2

Rank Model Params Set5 Set14 BSD100 Urban100
1 drln-bam 34m 38.23/0.9614 33.95/0.9206 33.95/0.9269 32.81/0.9339
2 edsr 41m 38.19/0.9612 33.99/0.9215 33.89/0.9266 32.68/0.9331
3 msrn 5.9m 38.08/0.9609 33.75/0.9183 33.82/0.9258 32.14/0.9287
4 mdsr 2.7m 38.04/0.9608 33.71/0.9184 33.79/0.9256 32.14/0.9283
5 msrn-bam 5.9m 38.02/0.9608 33.73/0.9186 33.78/0.9253 32.08/0.9276
6 edsr-base 1.5m 38.02/0.9607 33.66/0.9180 33.77/0.9254 32.04/0.9276
7 mdsr-bam 2.7m 38/0.9607 33.68/0.9182 33.77/0.9253 32.04/0.9272
8 awsrn-bam 1.4m 37.99/0.9606 33.66/0.918 33.76/0.9253 31.95/0.9265
9 a2n 1.0m 37.87/0.9602 33.54/0.9171 33.67/0.9244 31.71/0.9240
10 carn 1.6m 37.89/0.9602 33.53/0.9173 33.66/0.9242 31.62/0.9229
11 carn-bam 1.6m 37.83/0.96 33.51/0.9166 33.64/0.924 31.53/0.922
12 pan 260k 37.77/0.9599 33.42/0.9162 33.6/0.9235 31.31/0.9197
13 pan-bam 260k 37.7/0.9596 33.4/0.9161 33.6/0.9234 31.35/0.92

Scale x3

Rank Model Params Set5 Set14 BSD100 Urban100
1 drln-bam 34m 35.3/0.9422 31.27/0.8624 29.78/0.8224 29.82/0.8828
1 edsr 44m 35.31/0.9421 31.18/0.862 29.77/0.8224 29.75/0.8825
1 msrn 6.1m 35.12/0.9409 31.08/0.8593 29.67/0.8198 29.31/0.8743
2 mdsr 2.9m 35.11/0.9406 31.06/0.8593 29.66/0.8196 29.29/0.8738
3 msrn-bam 5.9m 35.13/0.9408 31.06/0.8588 29.65/0.8196 29.26/0.8736
4 mdsr-bam 2.9m 35.07/0.9402 31.04/0.8582 29.62/0.8188 29.16/0.8717
5 edsr-base 1.5m 35.01/0.9402 31.01/0.8583 29.63/0.8190 29.19/0.8722
6 awsrn-bam 1.5m 35.05/0.9403 31.01/0.8581 29.63/0.8188 29.14/0.871
7 carn 1.6m 34.88/0.9391 30.93/0.8566 29.56/0.8173 28.95/0.867
8 a2n 1.0m 34.8/0.9387 30.94/0.8568 29.56/0.8173 28.95/0.8671
9 carn-bam 1.6m 34.82/0.9385 30.9/0.8558 29.54/0.8166 28.84/0.8648
10 pan-bam 260k 34.62/0.9371 30.83/0.8545 29.47/0.8153 28.64/0.861
11 pan 260k 34.64/0.9376 30.8/0.8544 29.47/0.815 28.61/0.8603

Scale x4

Rank Model Params Set5 Set14 BSD100 Urban100
1 drln 35m 32.55/0.899 28.96/0.7901 28.65/0.7692 26.56/0.7998
2 drln-bam 34m 32.49/0.8986 28.94/0.7899 28.63/0.7686 26.53/0.7991
3 edsr 43m 32.5/0.8986 28.92/0.7899 28.62/0.7689 26.53/0.7995
4 msrn 6.1m 32.19/0.8951 28.78/0.7862 28.53/0.7657 26.12/0.7866
5 msrn-bam 5.9m 32.26/0.8955 28.78/0.7859 28.51/0.7651 26.10/0.7857
6 mdsr 2.8m 32.26/0.8953 28.77/0.7856 28.53/0.7653 26.07/0.7851
7 mdsr-bam 2.9m 32.19/0.8949 28.73/0.7847 28.50/0.7645 26.02/0.7834
8 awsrn-bam 1.6m 32.13/0.8947 28.75/0.7851 28.51/0.7647 26.03/0.7838
9 edsr-base 1.5m 32.12/0.8947 28.72/0.7845 28.50/0.7644 26.02/0.7832
10 a2n 1.0m 32.07/0.8933 28.68/0.7830 28.44/0.7624 25.89/0.7787
11 carn 1.6m 32.05/0.8931 28.67/0.7828 28.44/0.7625 25.85/0.7768
12 carn-bam 1.6m 32.0/0.8923 28.62/0.7822 28.41/0.7614 25.77/0.7741
13 pan 270k 31.92/0.8915 28.57/0.7802 28.35/0.7595 25.63/0.7692
14 pan-bam 270k 31.9/0.8911 28.54/0.7795 28.32/0.7591 25.6/0.7691
15 han 16m 31.21/0.8778 28.18/0.7712 28.09/0.7533 25.1/0.7497
16 rcan-bam 15m 30.8/0.8701 27.91/0.7648 27.91/0.7477 24.75/0.7346

You can find a notebook to easily run evaluation on pretrained models below:

Open In Colab

Train Models

We need the huggingface datasets library to download the data:

pip install datasets

The following code gets the data and preprocesses/augments the data.

from datasets import load_dataset
from super_image.data import EvalDataset, TrainDataset, augment_five_crop

augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\
    .map(augment_five_crop, batched=True, desc="Augmenting Dataset")                                # download and augment the data with the five_crop method
train_dataset = TrainDataset(augmented_dataset)                                                     # prepare the train dataset for loading PyTorch DataLoader
eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation'))      # prepare the eval dataset for the PyTorch DataLoader

The training code is provided below:

from super_image import Trainer, TrainingArguments, EdsrModel, EdsrConfig

training_args = TrainingArguments(
    output_dir='./results',                 # output directory
    num_train_epochs=1000,                  # total number of training epochs
)

config = EdsrConfig(
    scale=4,                                # train a model to upscale 4x
)
model = EdsrModel(config)

trainer = Trainer(
    model=model,                         # the instantiated model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=eval_dataset            # evaluation dataset
)

trainer.train()

Open In Colab

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

super_image-0.1.7.tar.gz (57.7 kB view details)

Uploaded Source

Built Distribution

super_image-0.1.7-py3-none-any.whl (91.0 kB view details)

Uploaded Python 3

File details

Details for the file super_image-0.1.7.tar.gz.

File metadata

  • Download URL: super_image-0.1.7.tar.gz
  • Upload date:
  • Size: 57.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for super_image-0.1.7.tar.gz
Algorithm Hash digest
SHA256 4add406dc9f495bb3ef37047c88c20e53c9b6ff785c8ab1293c2e472a5ff662d
MD5 689c47d13deb16d72c55175d501c5466
BLAKE2b-256 a3dfc330388e1e9c91ca7cb1a40d99128e23c8161d85ecf6e6106c1375c00f6b

See more details on using hashes here.

File details

Details for the file super_image-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: super_image-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 91.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for super_image-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e4344f6f080a4569ae88bbf8b13c6b4876df0911dbe57234a5154e4b0a3a0879
MD5 dea79dc4ddb1900791b7ce1725f81a6f
BLAKE2b-256 3e21bf909e549d6f72a45276aa97b9cca1071514961db1370ae9cfe47e47719a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page