No project description provided
Project description
SUPER IVIM-DC
Intra-voxel incoherent motion (IVIM) analysis of fetal lungs Diffusion-Weighted MRI (DWI) data shows potential in providing quantitative imaging bio-markers that reflect, indirectly, diffusion and pseudo-diffusion for non-invasive fetal lung maturation assessment. However, long acquisition times, due to the large number of different 'b-value' images required for IVIM analysis, precluded clinical feasibility.
We introduce SUPER-IVIM-DC a deep-neural-networks (DNN) approach which couples supervised loss with a data-consistency term to enable IVIM analysis of DWI data acquired with a limited number of b-values.
We demonstrated the added-value of SUPER-IVIM-DC over both classical and recent DNN approaches for IVIM analysis through numerical simulations, healthy volunteer study, and IVIM analysis of fetal lung maturation from fetal DWI data.
Our numerical simulations and healthy volunteer study show that SUPER-IVIM-DC estimates of the IVIM model parameters from limited DWI data had lower normalized root mean-squared error compared to previous DNN-based approaches. Further, SUPER-IVIM-DC estimates of the pseudo-diffusion fraction parameter from limited DWI data of fetal lungs correlate better with gestational age compared to both to classical and DNN-based approaches (0.555 vs. 0.463 and 0.310).
SUPER-IVIM-DC has the potential to reduce the long acquisition times associated with IVIM analysis of DWI data and to provide clinically feasible bio-markers for non-invasive fetal lung maturity assessment.
Usage
Clone and install the package using pip install super-ivim-dc
Run training, generate .pt
files
from super_ivim_dc.train import train
import numpy as np
working_dir: str = './working_dir'
super_ivim_dc_filename: str = 'super_ivim_dc' # do not include .pt
ivimnet_filename: str = 'ivimnet' # do not include .pt
bvalues = np.array([0,15,30,45,60,75,90,105,120,135,150,175,200,400,600,800])
snr = 10
sample_size = 100
train(
SNR=snr,
bvalues=bvalues,
super_ivim_dc=True,
ivimnet=True,
work_dir=working_dir,
super_ivim_dc_filename=super_ivim_dc_filename,
ivimnet_filename=ivimnet_filename,
verbose=False
)
This will create the following files:
- ivimnet_init.json, super_ivim_dc_init.json - contains the initial values used in the training
- ivimnet.pt, super_ivim_dc.pt - the pytorch models
Generate a random signal and test the generated model
from super_ivim_dc.infer import test_infer
test_infer(
SNR=snr,
bvalues=bvalues,
work_dir=working_dir,
super_ivim_dc_filename=super_ivim_dc_filename,
ivimnet_filename=ivimnet_filename,
save_figure_to=None, # if set to None, the figure will be shown in the notebook
sample_size=sample_size,
)
Generate signal
from super_ivim_dc.IVIMNET import simulations
IVIM_signal_noisy, Dt, f, Dp = simulations.sim_signal(
SNR=snr,
bvalues=bvalues,
sims=sample_size
)
Dt, f, Dp = np.squeeze(Dt), np.squeeze(f), np.squeeze(Dp)
Run inference on the generated signal
from super_ivim_dc.infer import infer_from_signal
Dp_ivimnet, Dt_ivimnet, Fp_ivimnet, S0_ivimnet = infer_from_signal(
signal=IVIM_signal_noisy,
bvalues=bvalues,
model_path=f"{working_dir}/{ivimnet_filename}.pt",
)
Dp_superivimdc, Dt_superivimdc, Fp_superivimdc, S0_superivimdc = infer_from_signal(
signal=IVIM_signal_noisy,
bvalues=bvalues,
model_path=f"{working_dir}/{super_ivim_dc_filename}.pt",
)
References
- Korngut, N., Rotman, E., Afacan, O., Kurugol, S., Zaffrani-Reznikov, Y., Nemirovsky-Rotman, S., Warfield, S., Freiman, M.: SUPER-IVIM-DC: Intra-voxel incoherent motion based Fetal lung maturity assessment from limited DWI data using supervised learning coupled with data-consistency, https://arxiv.org/abs/2206.03820 (2022)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file super-ivim-dc-0.4.0.tar.gz
.
File metadata
- Download URL: super-ivim-dc-0.4.0.tar.gz
- Upload date:
- Size: 83.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c66568956b7834817737bb00d5f2ffc0ae82a20fb2b3b9c22879aeff3c81a01 |
|
MD5 | 8bfa5677ceb56f68f9f584f6094387d2 |
|
BLAKE2b-256 | 8bb59f58090d96b1d913dee609260760cff584971854e1d480fc8f1be540f44f |
File details
Details for the file super_ivim_dc-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: super_ivim_dc-0.4.0-py3-none-any.whl
- Upload date:
- Size: 77.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e35816d9575aa39eecf4fbd7ce74cd49979fbca55b884e3ef5521b0a3e2fb6a6 |
|
MD5 | b132ec0a39e3d1673b76318bc0d3d97e |
|
BLAKE2b-256 | 82a2435ca7dfe7ad1710e2f716700b955fae72595780ea150ab06418cdc5d428 |