Local Feature Extractors and Matchers Network Library for PyTorch
Project description
dloc - the deeplearning localization toolbox
This is dloc
, a modular toolbox for state-of-the-art local feature extaction and matching.
Support
Reference
- d2net: extract keypoint from 1/8 feature map
- superpoint: could extract in corner points, pretrained with magicpoint
- superglue: excellent matching algorithm but pretrained model only support superpoint, we have implementation superglue with sift/superpoint in megadepth datasets.
- disk: add reinforcement for keypoints extraction
- aslfeat: build multiscale extraction network
- cotr: build transformer network for points matching
- loftr: dense extraction and matching with end-to-end network
- r2d2: add repeatability and reliability for keypoints extraction
- contextdesc: keypoints use sift, use full image context to enhence descriptor. expensive calculation.
- NGRANSAC
If you are interested in local feature, https://drive.weixin.qq.com/s?k=AJEAIQdfAAo0ta3HBsAKMA9AatACk is useful.
Installation
pip install superMatch
dloc
could run on mirrors.tencent.com/xlab/colmap:v2.0 with python3.
Debugging and Visualization
Download https://drive.weixin.qq.com/s?k=AJEAIQdfAAob00fTSEAKMA9AatACk datasets to assets.
Weights could be download from https://drive.weixin.qq.com/s?k=AJEAIQdfAAo97Nnovq.
industrial visualization and debug
## initial model
model, config = dloc.build_model('superpoint_aachen', 'superglue_outdoor', 'SuperMatch/weights', landmark=False, direct=False)
## get matches or relative pose
results = dloc.get_matches('SuperMatch/assets/2543051003_7b970fc234_o.jpg', 'SuperMatch/assets/301490830_aded42bc67_o.jpg', model, config, landmarks=None)
or
results_pose = dloc.get_pose('SuperMatch/assets/2543051003_7b970fc234_o.jpg', 'SuperMatch/assets/301490830_aded42bc67_o.jpg', model, config, mode='H')
explanation
build_model(extractor, matcher, model_path='', landmark=False, direct=False)
get_matches(name0, name1, model, config, resize=[-1], with_desc=False, landmarks=None)
get_pose(img1, img2, model, config, resize=[-1], landmarks=None, mode='H')
- extractors: 'superpoint_aachen', 'superpoint_inloc', 'd2net-ss', 'r2d2-desc','context-desc', 'landmark', 'aslfeat-desc', 'disk-desc', 'swin-disk-desc'
- matchers: 'superglue_outdoor', 'superglue_disk', 'superglue_swin_disk', 'superglue_indoor', 'NN', 'disk', 'cotr', 'loftr'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
superMatch-0.0.5-py3-none-any.whl
(196.3 kB
view details)
File details
Details for the file superMatch-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: superMatch-0.0.5-py3-none-any.whl
- Upload date:
- Size: 196.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/3.7.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d711a0f53f61bcfbe6b6488c0b72996d2d187833335bd6d7154161ad7a8e5707 |
|
MD5 | 0ab01f970ecd0a9af634763159216773 |
|
BLAKE2b-256 | 33fefc1ea6d7eea800b8e473efc92246a0c1178df9a56d6315d5c1991ad503c1 |