Skip to main content

No project description provided

Project description


Superagentx-Examples

Python 3.10+ GitHub Repo stars License: MIT

Getting Started

pip install superagentx-examples
Usage - Example SuperAgentX Code

This SuperAgentX example utilizes two handlers, Amazon and Walmart, to search for product items based on user input from the IO Console.

  1. It uses Parallel execution of handler in the agent
  2. Memory Context Enabled
  3. LLM configured to OpenAI
  4. Pre-requisites

Set OpenAI Key:

export OPENAI_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxxx

Set Rapid API Key Free Subscription for Amazon, Walmart Search APIs

export RAPID_API_KEY=XXXXXXXXXXXXXXXXXXXXXXXXX
# Additional lib needs to install
# python3 superagentx_examples/ecom_iopipe.py

import asyncio

from rich import print as rprint
from superagentx.agent import Agent
from superagentx.agentxpipe import AgentXPipe
from superagentx.engine import Engine
from superagentx.llm import LLMClient
from superagentx.memory import Memory
from superagentx.pipeimpl.iopipe import IOPipe
from superagentx.prompt import PromptTemplate

from superagentx_handlers.ecommerce.amazon import AmazonHandler
from superagentx_handlers.ecommerce.walmart import WalmartHandler


async def main():
    """
    Launches the e-commerce pipeline console client for processing requests and handling data.
    """

    # LLM Configuration
    llm_config = {'llm_type': 'openai'}
    llm_client: LLMClient = LLMClient(llm_config=llm_config)

    # Enable Memory
    memory = Memory()

    # Add Two Handlers (Tools) - Amazon, Walmart
    amazon_ecom_handler = AmazonHandler()
    walmart_ecom_handler = WalmartHandler()

    # Prompt Template
    prompt_template = PromptTemplate()

    # Amazon & Walmart Engine to execute handlers
    amazon_engine = Engine(
        handler=amazon_ecom_handler,
        llm=llm_client,
        prompt_template=prompt_template
    )
    walmart_engine = Engine(
        handler=walmart_ecom_handler,
        llm=llm_client,
        prompt_template=prompt_template
    )

    # Create Agent with Amazon, Walmart Engines execute in Parallel - Search Products from user prompts
    ecom_agent = Agent(
        name='Ecom Agent',
        goal="Get me the best search results",
        role="You are the best product searcher",
        llm=llm_client,
        prompt_template=prompt_template,
        engines=[[amazon_engine, walmart_engine]]
    )

    # Pipe Interface to send it to public accessible interface (Cli Console / WebSocket / Restful API)
    pipe = AgentXPipe(
        agents=[ecom_agent],
        memory=memory
    )

    # Create IO Cli Console - Interface
    io_pipe = IOPipe(
        search_name='SuperAgentX Ecom',
        agentx_pipe=pipe,
        read_prompt=f"\n[bold green]Enter your search here"
    )
    await io_pipe.start()


if __name__ == '__main__':
    try:
        asyncio.run(main())
    except (KeyboardInterrupt, asyncio.CancelledError):
        rprint("\nUser canceled the [bold yellow][i]pipe[/i]!")
Usage - Example SuperAgentX Result

SuperAgentX searches for product items requested by the user in the console, validates them against the set goal, and returns the result. It retains the context, allowing it to respond to the user's next prompt in the IO Console intelligently.

Output

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

superagentx_examples-0.1.0.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

superagentx_examples-0.1.0-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file superagentx_examples-0.1.0.tar.gz.

File metadata

  • Download URL: superagentx_examples-0.1.0.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.6 Darwin/24.0.0

File hashes

Hashes for superagentx_examples-0.1.0.tar.gz
Algorithm Hash digest
SHA256 a8c8ab40ae7f3952d82a72809d1e7f937c0a1981ffe20103f3e2ec151d20a4d0
MD5 d93a6e458dc5e96584928637a53a316f
BLAKE2b-256 83205d5ee1848fef565358dfb436c2ae91cda4d57add90c89aceedc60e84ed60

See more details on using hashes here.

File details

Details for the file superagentx_examples-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for superagentx_examples-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 508845ef92a3f40a5569ac1baf5168b8ecae1e2ff19a798b21327bf9cf896bb9
MD5 b41a2eafc26dd6da7e50b89838681b6e
BLAKE2b-256 35f7e33a0dcff98d7b4ed3b0d677be1d1ea728038ff4d9d4ccb2c9c6de755022

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page