Skip to main content

No project description provided

Project description


Superagentx-Examples

Python 3.10+ GitHub Repo stars License: MIT

Getting Started

pip install superagentx-examples
Usage - Example SuperAgentX Code

This SuperAgentX example utilizes two handlers, Amazon and Walmart, to search for product items based on user input from the IO Console.

  1. It uses Parallel execution of handler in the agent
  2. Memory Context Enabled
  3. LLM configured to OpenAI
  4. Pre-requisites

Set OpenAI Key:

export OPENAI_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxxx

Set Rapid API Key Free Subscription for Amazon, Walmart Search APIs

export RAPID_API_KEY=XXXXXXXXXXXXXXXXXXXXXXXXX
# Additional lib needs to install
# python3 superagentx_examples/ecom_iopipe.py

import asyncio

from rich import print as rprint
from superagentx.agent import Agent
from superagentx.agentxpipe import AgentXPipe
from superagentx.engine import Engine
from superagentx.llm import LLMClient
from superagentx.memory import Memory
from superagentx.pipeimpl.iopipe import IOPipe
from superagentx.prompt import PromptTemplate

from superagentx_handlers.ecommerce.amazon import AmazonHandler
from superagentx_handlers.ecommerce.walmart import WalmartHandler


async def main():
    """
    Launches the e-commerce pipeline console client for processing requests and handling data.
    """

    # LLM Configuration
    llm_config = {'llm_type': 'openai'}
    llm_client: LLMClient = LLMClient(llm_config=llm_config)

    # Enable Memory
    memory = Memory()

    # Add Two Handlers (Tools) - Amazon, Walmart
    amazon_ecom_handler = AmazonHandler()
    walmart_ecom_handler = WalmartHandler()

    # Prompt Template
    prompt_template = PromptTemplate()

    # Amazon & Walmart Engine to execute handlers
    amazon_engine = Engine(
        handler=amazon_ecom_handler,
        llm=llm_client,
        prompt_template=prompt_template
    )
    walmart_engine = Engine(
        handler=walmart_ecom_handler,
        llm=llm_client,
        prompt_template=prompt_template
    )

    # Create Agent with Amazon, Walmart Engines execute in Parallel - Search Products from user prompts
    ecom_agent = Agent(
        name='Ecom Agent',
        goal="Get me the best search results",
        role="You are the best product searcher",
        llm=llm_client,
        prompt_template=prompt_template,
        engines=[[amazon_engine, walmart_engine]]
    )

    # Pipe Interface to send it to public accessible interface (Cli Console / WebSocket / Restful API)
    pipe = AgentXPipe(
        agents=[ecom_agent],
        memory=memory
    )

    # Create IO Cli Console - Interface
    io_pipe = IOPipe(
        search_name='SuperAgentX Ecom',
        agentx_pipe=pipe,
        read_prompt=f"\n[bold green]Enter your search here"
    )
    await io_pipe.start()


if __name__ == '__main__':
    try:
        asyncio.run(main())
    except (KeyboardInterrupt, asyncio.CancelledError):
        rprint("\nUser canceled the [bold yellow][i]pipe[/i]!")
Usage - Example SuperAgentX Result

SuperAgentX searches for product items requested by the user in the console, validates them against the set goal, and returns the result. It retains the context, allowing it to respond to the user's next prompt in the IO Console intelligently.

Output

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

superagentx_examples-0.1.1.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

superagentx_examples-0.1.1-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file superagentx_examples-0.1.1.tar.gz.

File metadata

  • Download URL: superagentx_examples-0.1.1.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.6 Darwin/24.0.0

File hashes

Hashes for superagentx_examples-0.1.1.tar.gz
Algorithm Hash digest
SHA256 ca3cd683e1a952407071a7db34fd56f351c8dfc4b45ac5825e6ca5755d020759
MD5 ae1cb6d6001a03f65233c93d0c83ec18
BLAKE2b-256 e98d1a19f885e1355605a62b7ebb96050eb64babec6be625e8c3efa31884272b

See more details on using hashes here.

File details

Details for the file superagentx_examples-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for superagentx_examples-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 785ebd7881cdf294a1d8da5a422a9d5c1a167591a33c1d0afe7eb7ccbe84c308
MD5 3fa1bccb4fcfb91c074e0be445afa512
BLAKE2b-256 1f7d1ca5aadd3223e8e6a531ec2d3ebdfb59bee852dc3c73ae677cc49d34e64b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page