Skip to main content

No project description provided

Project description


Superagentx-Handlers

Python 3.10+ GitHub Repo stars License: MIT

Getting Started

pip install superagentx-handlers
Usage - Example SuperAgentX Code

This SuperAgentX example utilizes two handlers, Amazon and Walmart, to search for product items based on user input from the IO Console.

  1. It uses Parallel execution of handler in the agent
  2. Memory Context Enabled
  3. LLM configured to OpenAI
  4. Pre-requisites

Set OpenAI Key:

export OPENAI_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxxx

Set Rapid API Key Free Subscription for Amazon, Walmart Search APIs

export RAPID_API_KEY=XXXXXXXXXXXXXXXXXXXXXXXXX
# Additional lib needs to install
# pip install superagentx
# python3 superagentx_examples/ecom_iopipe.py

import asyncio

from rich import print as rprint
from superagentx.agent import Agent
from superagentx.agentxpipe import AgentXPipe
from superagentx.engine import Engine
from superagentx.llm import LLMClient
from superagentx.memory import Memory
from superagentx.pipeimpl.iopipe import IOPipe
from superagentx.prompt import PromptTemplate

from superagentx_handlers.ecommerce.amazon import AmazonHandler
from superagentx_handlers.ecommerce.walmart import WalmartHandler


async def main():
    """
    Launches the e-commerce pipeline console client for processing requests and handling data.
    """

    # LLM Configuration
    llm_config = {'llm_type': 'openai'}
    llm_client: LLMClient = LLMClient(llm_config=llm_config)

    # Enable Memory
    memory = Memory()

    # Add Two Handlers (Tools) - Amazon, Walmart
    amazon_ecom_handler = AmazonHandler()
    walmart_ecom_handler = WalmartHandler()

    # Prompt Template
    prompt_template = PromptTemplate()

    # Amazon & Walmart Engine to execute handlers
    amazon_engine = Engine(
        handler=amazon_ecom_handler,
        llm=llm_client,
        prompt_template=prompt_template
    )
    walmart_engine = Engine(
        handler=walmart_ecom_handler,
        llm=llm_client,
        prompt_template=prompt_template
    )

    # Create Agent with Amazon, Walmart Engines execute in Parallel - Search Products from user prompts
    ecom_agent = Agent(
        name='Ecom Agent',
        goal="Get me the best search results",
        role="You are the best product searcher",
        llm=llm_client,
        prompt_template=prompt_template,
        engines=[[amazon_engine, walmart_engine]]
    )

    # Pipe Interface to send it to public accessible interface (Cli Console / WebSocket / Restful API)
    pipe = AgentXPipe(
        agents=[ecom_agent],
        memory=memory
    )

    # Create IO Cli Console - Interface
    io_pipe = IOPipe(
        search_name='SuperAgentX Ecom',
        agentx_pipe=pipe,
        read_prompt=f"\n[bold green]Enter your search here"
    )
    await io_pipe.start()


if __name__ == '__main__':
    try:
        asyncio.run(main())
    except (KeyboardInterrupt, asyncio.CancelledError):
        rprint("\nUser canceled the [bold yellow][i]pipe[/i]!")
Usage - Example SuperAgentX Result

SuperAgentX searches for product items requested by the user in the console, validates them against the set goal, and returns the result. It retains the context, allowing it to respond to the user's next prompt in the IO Console intelligently.

Output

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

superagentx_handlers-0.1.1.tar.gz (26.2 kB view details)

Uploaded Source

Built Distribution

superagentx_handlers-0.1.1-py3-none-any.whl (36.3 kB view details)

Uploaded Python 3

File details

Details for the file superagentx_handlers-0.1.1.tar.gz.

File metadata

  • Download URL: superagentx_handlers-0.1.1.tar.gz
  • Upload date:
  • Size: 26.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.6 Darwin/24.0.0

File hashes

Hashes for superagentx_handlers-0.1.1.tar.gz
Algorithm Hash digest
SHA256 ff8a55cb1e9de0055f13454f018f812e5e761f469f9774a7df5b77fdfc956937
MD5 47d253d242ce3b67f4efe349a106af8f
BLAKE2b-256 2b706f98d32c0083292d43f38469d9c4e81072ebc1d2d3896beaf1a6a7b4a6b6

See more details on using hashes here.

File details

Details for the file superagentx_handlers-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for superagentx_handlers-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 121969ab2f838d60d4313a0655c32668ed9d18d946bc2e2c6aeee96f6ad97acd
MD5 b3aa075d5f4575bb8eef2fdf8a8153ce
BLAKE2b-256 9074f8dc12084d244c1e62721ff50b74780a2462702f1578ea0d6869f6dd3cbf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page