superduper allows users to work with arbitrary sklearn estimators, with additional support for pre-, post-processing and input/ output data-types.
Project description
superduper_sklearn
superduper allows users to work with arbitrary sklearn estimators, with additional support for pre-, post-processing and input/ output data-types.
Installation
pip install superduper_sklearn
API
Class | Description |
---|---|
superduper_sklearn.model.SklearnTrainer |
A trainer for sklearn models. |
superduper_sklearn.model.Estimator |
Estimator model. |
Examples
Estimator
from superduper_sklearn import Estimator
from sklearn.svm import SVC
model = Estimator(
identifier='test',
object=SVC(),
)
Training Example
Read more about this here
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file superduper_sklearn-0.4.0.tar.gz
.
File metadata
- Download URL: superduper_sklearn-0.4.0.tar.gz
- Upload date:
- Size: 13.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb5943cd99eb7a9236c06aa52c0d56f59944ded108dad2db816620fbf987825b |
|
MD5 | 6c6617990caa35c461e69fdba23420ea |
|
BLAKE2b-256 | 4df8fa646ae8e7a83ab811dfa58fe779698183a85c61535f61b61192271f037a |
Provenance
The following attestation bundles were made for superduper_sklearn-0.4.0.tar.gz
:
Publisher:
release_plugins.yaml
on superduper-io/superduper
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
superduper_sklearn-0.4.0.tar.gz
- Subject digest:
bb5943cd99eb7a9236c06aa52c0d56f59944ded108dad2db816620fbf987825b
- Sigstore transparency entry: 146081664
- Sigstore integration time:
- Predicate type:
File details
Details for the file superduper_sklearn-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: superduper_sklearn-0.4.0-py3-none-any.whl
- Upload date:
- Size: 11.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f0878581b3ffd20f5b397ae479624f63963f4c1eeed50ae8edd8ab88b7ca8ca0 |
|
MD5 | 3c3414622adaf55cb69beb453b6efa7a |
|
BLAKE2b-256 | 8633f1d030583ecc933f3d1ace6f4cb158b5e9b241c5346b75975e283d28500c |
Provenance
The following attestation bundles were made for superduper_sklearn-0.4.0-py3-none-any.whl
:
Publisher:
release_plugins.yaml
on superduper-io/superduper
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
superduper_sklearn-0.4.0-py3-none-any.whl
- Subject digest:
f0878581b3ffd20f5b397ae479624f63963f4c1eeed50ae8edd8ab88b7ca8ca0
- Sigstore transparency entry: 146081665
- Sigstore integration time:
- Predicate type: