superduper allows users to work with arbitrary sklearn estimators, with additional support for pre-, post-processing and input/ output data-types.
Project description
superduper_sklearn
superduper allows users to work with arbitrary sklearn estimators, with additional support for pre-, post-processing and input/ output data-types.
Installation
pip install superduper_sklearn
API
Class | Description |
---|---|
superduper_sklearn.model.SklearnTrainer |
A trainer for sklearn models. |
superduper_sklearn.model.Estimator |
Estimator model. |
Examples
Estimator
from superduper_sklearn import Estimator
from sklearn.svm import SVC
model = Estimator(
identifier='test',
object=SVC(),
)
Training Example
Read more about this here
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
superduper_sklearn-0.0.5.tar.gz
(13.3 kB
view hashes)
Built Distribution
Close
Hashes for superduper_sklearn-0.0.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37b6cd890f53cff011eb73cf6f1b076aca189e9203fa170e38f36e6b8f4bb632 |
|
MD5 | 6bdb026f279bd6a8d8b221b83d39c24f |
|
BLAKE2b-256 | 99a009b5f8cb9b625a7adb22a483ca3ab89bda49921987d8f23e43404eff2922 |