Skip to main content

Superduper allows users to work with self-hosted LLM models via [vLLM](https://github.com/vllm-project/vllm).

Project description

superduper_vllm

Superduper allows users to work with self-hosted LLM models via vLLM.

Installation

pip install superduper_vllm

API

Class Description
superduper_vllm.model.VllmChat VLLM model for chatting.
superduper_vllm.model.VllmCompletion VLLM model for generating completions.

Examples

VllmChat

from superduper_vllm import VllmChat
vllm_params = dict(
    model="hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
    quantization="awq",
    dtype="auto",
    max_model_len=1024,
    tensor_parallel_size=1,
)
model = VllmChat(identifier="model", vllm_params=vllm_params)
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "hello"},
]

Chat with chat format messages

model.predict(messages)

Chat with text format messages

model.predict("hello")

VllmCompletion

from superduper_vllm import VllmCompletion
vllm_params = dict(
    model="hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
    quantization="awq",
    dtype="auto",
    max_model_len=1024,
    tensor_parallel_size=1,
)
model = VllmCompletion(identifier="model", vllm_params=vllm_params)
model.predict("hello")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

superduper_vllm-0.4.0.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

superduper_vllm-0.4.0-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file superduper_vllm-0.4.0.tar.gz.

File metadata

  • Download URL: superduper_vllm-0.4.0.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for superduper_vllm-0.4.0.tar.gz
Algorithm Hash digest
SHA256 bf51e137911f320297d12618073de749621e3f223e8a12dd105f197f53d5585e
MD5 f9fe5d5d458437dc0a56142221e84045
BLAKE2b-256 c93881cba0c0e57ed45ecce9d10b45384c068aac9bc4d4c9d1eafbd1bca17e6b

See more details on using hashes here.

File details

Details for the file superduper_vllm-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for superduper_vllm-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 772c9fb3150cb51edb000ee4b9baa654ef3bf7fc1b3fc3b6bfa843424aeae2da
MD5 9dc8a71b6587a6cdbc5726d90cf2fcf4
BLAKE2b-256 acef958960047124e8f586ae51ad8925615e177bd1968c8bc21c526b1e0bbab2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page