Superinference is a library that infers analysis-ready attributes from a person''s social media username or unique identifier and returns them as JSON objects.
Project description
Superinference
Superinference is a library that infers analysis-ready attributes from a person's social media username or unique identifier and returns them as JSON objects. The development of Superinference was initiated by Aurellia Christie and other members of Supertype, who created a Javascript library that can be accessed here.
It supports both token-based (OAuth) authorization for authenticated requests and unauthenticated requests for public data. It currently supports the following social media channels:
- GitHub
- Dev.to
- Medium
- WordPress
Live Demo:
Check out this Colab notebook to quickly experiment with Superinference.
Use Cases
You might use superinference to generate profile pages of your app users, or to enrich your user data with additional information by inferring them from their social media accounts. You might also use it to accelerate your account creation process by directly inferring attributes such as their email address, name, and profile picture.
Installation
You can install the package using pip
:
pip install superinference
Requirements
requests==2.28.1
rich==13.3.2
Usage
Common Patterns
There is nothing magic here. Superinference is just a wrapper around the social media APIs and so it's usage is very simple. Here is how you would extract and infer attributes (profile
, skill
, stats
, contribution
) from a person using his/her GitHub username:
from superinference.github import GithubProfile
githubprofile = GithubProfile(username="AurelliaChristie")
githubprofile.perform_inference()
Output:
{
'profile': {
'login': 'AurelliaChristie',
'name': 'Aurellia Christie',
'company': '@supertypeai ',
'blog': '',
'location': None,
'email': None,
'hireable': None,
'twitter_username': None,
'avatar_url': 'https://avatars.githubusercontent.com/u/69672839?v=4',
'bio': 'Full Stack Data Scientist at @supertypeai',
'followers': 8,
'following': 8
},
'skill': {
# based on the user's owned repositories data, profile bio and profile README
'inference_from_originalrepo_count': 17,
'key_qualifications': ['data-scientist', 'data', 'consultancy', 'full-stack-developer'],
'top_n_languages': ['html', 'javascript', 'python'],
'languages_percentage': {
# only available for authorized request, otherwise will return null
'html': 0.529,
'javascript': 0.353,
'python': 0.294,
'css': 0.235,
'r': 0.059,
'jupyter-notebook': 0.059
}
},
'stats': {
'incomplete_repo_results': False,
'inference_from_repo_count': 26,
'original_repo_count': 17,
'forked_repo_count': 9,
'counts': {'stargazers_count': 2, 'forks_count': 4},
'top_repo_stars_forks': [
{
'name': 'Ad-Fatigued-List-Generator',
'html_url': 'https://github.com/AurelliaChristie/Ad-Fatigued-List-Generator',
'description': None,
'top_language': 'Python',
'stargazers_count': 0,
'forks_count': 1
},
{
'name': 'BeautIndonesia',
'html_url': 'https://github.com/AurelliaChristie/BeautIndonesia',
...
},
{
'name': 'cryptocurrency',
'html_url': 'https://github.com/AurelliaChristie/cryptocurrency',
...
}
]
},
'contribution': {
# only available for authorized request, otherwise will return null
'contribution_count': 1081,
'weekly_average_contribution': 7.833,
'contribution_count_per_day': {
# the first value represents the contributions count in the last 12 months,
# while the second value represents the contributions count of all time
'Wed': [106, 219],
'Thu': [80, 198],
'Fri': [66, 226],
'Mon': [54, 161],
'Tue': [44, 176],
'Sun': [11, 52],
'Sat': [6, 49]
},
'contribution_count_per_month': {
# the first value represents the contributions count in the last 12 months,
# while the second value represents the contributions count of all time
'Mar': [120, 169],
'Feb': [88, 162],
'Aug': [32, 42],
'Oct': [24, 163],
'Jul': [22, 56],
'Sep': [19, 73],
'Jun': [18, 25],
'Apr': [16, 26],
'Nov': [15, 75],
'Jan': [6, 190],
'May': [4, 27],
'Dec': [3, 73]
},
# the following 4 properties are inferred from the top 100 repos per year based on the total contributions count
'contribution_count_per_owned_repo': {
'BeautIndonesia': 84,
'TWO': 52,
'Skilvul-Tech4impact': 34,
'Ad-Fatigued-List-Generator': 32,
'Inventory-Management': 15,
'21_JSIntermediate_Code_Challenge': 15,
'Skilvul-Git-Second-Assignment': 14,
'Learning-Django': 9,
'Statistics-and-Microsoft-Excel-101': 7,
'Using-R-for-Time-Series-Stock-Analysis': 5,
'Multivariate-Analysis-McD-and-KFC-Nutrition-Facts': 5,
'cryptocurrency': 4,
'AurelliaChristie': 3,
'express-heroku-todolist': 2,
'dashboard-training': 2,
'Documentations': 2,
'supertype-fellowship': 1
},
'contribution_count_per_other_repo': [
{
'name': 'Toyota',
'owner': 'supertypeai',
'html_url': 'https://github.com/supertypeai/Toyota',
'description': None,
'top_language': None,
'contributions_count': 181
},
{
'name': 'generations-frontend',
'owner': 'onlyphantom',
'html_url': 'https://github.com/onlyphantom/generations-frontend',
'description': 'Front end for Fellowship by @supertypeai',
'top_language': 'javascript',
'contributions_count': 176
},
{
'name': 'CookInd',
'owner': 'Tech4Impact-21-22',
...
},
...
],
'contribution_count_per_repo_org_owner': {
'supertypeai': 396,
'Tech4Impact-21-22': 124,
'olahdata-ai': 2,
'impactbyte': 1,
'supabase': 1
},
'contribution_count_per_repo_user_owner': {
'AurelliaChristie': 286,
'onlyphantom': 215,
'Lathh': 18,
'vccalvin33': 9
},
# incoming contribution count (commits and pull requests from other users)
# only based on the top and latest 10 repositories
'external_contribution_to_top_10_repo': {'geraldbryan': 42}
}
}
And here is another example using a Dev.to username:
from superinference.github import DevtoProfile
devtoprofile = DevtoProfile(username="onlyphantom")
devtoprofile.perform_inference()
Output:
{
'type_of': 'user',
'id': 189820,
'username': 'onlyphantom',
'name': 'Samuel Chan',
'twitter_username': '_onlyphantom',
'github_username': 'onlyphantom',
'summary': 'Three-time entrepreneur. Co-founder of Algoritma, a data science academy; https://supertype.ai, a
full-cycle data science agency; GrowthBot (chatbot on Slack). Building: Learnblockchain.academy',
'location': 'Indonesia / Singapore',
'website_url': 'https://www.youtube.com/samuelchan',
'joined_at': 'Jul 3, 2019',
'profile_image':
'https://res.cloudinary.com/practicaldev/image/fetch/...
}
Authenticated Requests
The calls in the code example above are unauthorized requests, so it collects data from public profiles and returns information that is available to the public.
You can optionally pass in an OAuth token to make authenticated requests to, in the case of GitHub, which provide the capability to extract and infer stats from private repositories not available to the public.
githubprofile = GithubProfile(username="onlyphantom",access_token=access_token)
devtoprofile.perform_inference(top_repo_n=10, top_language_n=5, include_private=True)
This returns the top 10 repositories, including private ones, and the top 5 languages using a GitHub OAuth token.
API Rate Limit
The APIs we use restrict the number of requests that can be made within a set timeframe. If this limit is exceeded, the API looping will cease and we will provide the inference from the data we have collected thus far. To see this information, you can check the following parameters included in the response:
incomplete_<item>_results
: Boolean that indicates if the results for<item>
are incomplete due to reaching the API rate limit.inference_from_<item>_count
: The number of<item>
got from the API (before reaching the API rate limit).
Special notes for GitHub API : the API can only return maximum 1,000 results (10 pages) per endpoint. Thus there will be a case where you see the incomplete_<item>_results
set to false
while the inference_from_<item>_count
set to 1,000
even though there supposed to be more than 1,000 <items>
.
MIT License
Copyright 2023 Supertype
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file superinference-1.0.5.tar.gz
.
File metadata
- Download URL: superinference-1.0.5.tar.gz
- Upload date:
- Size: 14.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ddca87ef22903edb300818f192eed9451a7e92da017b560345af4c1ac4a2e5e7 |
|
MD5 | 3fb232b2c8d19b6f1d90bb01f275a052 |
|
BLAKE2b-256 | b61216df60559516065f992a715a839177a0d51cc69f7e91a51c55d1ca19cdec |
File details
Details for the file superinference-1.0.5-py3-none-any.whl
.
File metadata
- Download URL: superinference-1.0.5-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 181d5f3482b0159a2cc30e1744121647a809283004a01f05fed76d992031f316 |
|
MD5 | 3c8410e7766ff51da4c37f4cbc21acd0 |
|
BLAKE2b-256 | 8c1d82edf7e9c093c03453f83a9056d39f5b812c583a2eadab407b33b339480a |