Skip to main content

The Superlinked vector computing library

Project description

 

PyPI Last commit License

Why use Superlinked

Improve your vector search relevance by encoding your metadata together with your data into your vector embeddings.

What is Superlinked

Superlinked is a framework AND a self-hostable REST API server that helps you make better vectors, that sits between your data, vector database and backend services.

How does it work

Superlinked makes it easy to construct custom data & query embedding models from pre-trained encoders, see the feature and use-case notebooks below for examples.

If you like what we do, give us a star! ⭐

Visit Superlinked for more information about the company behind this product and our other initiatives.

Features

You can check a full list of our features or head to our reference section for more information.

Use-cases

Dive deeper with our notebooks into how each use-case benefits from the Superlinked framework.

You can check a full list of examples here.

Experiment in a notebook

Example on combining Text with Numerical encoders to get correct results with LLMs.

Install the superlinked library

%pip install superlinked

Run the example:

First run will take slightly longer as it has to download the embedding model.

import json

from superlinked.framework.common.nlq.open_ai import OpenAIClientConfig
from superlinked.framework.common.parser.dataframe_parser import DataFrameParser
from superlinked.framework.common.schema.schema import schema
from superlinked.framework.common.schema.schema_object import Integer, String
from superlinked.framework.common.schema.id_schema_object import IdField
from superlinked.framework.common.space.config.embedding.number_embedding_config import Mode
from superlinked.framework.dsl.space.number_space import NumberSpace
from superlinked.framework.dsl.space.text_similarity_space import TextSimilaritySpace
from superlinked.framework.dsl.index.index import Index
from superlinked.framework.dsl.query.param import Param
from superlinked.framework.dsl.query.query import Query
from superlinked.framework.dsl.source.in_memory_source import InMemorySource
from superlinked.framework.dsl.executor.in_memory.in_memory_executor import (
    InMemoryExecutor,
)

@schema
class Review:
    id: IdField
    review_text: String
    rating: Integer


review = Review()

review_text_space = TextSimilaritySpace(
    text=review.review_text, model="Alibaba-NLP/gte-large-en-v1.5"
)
rating_maximizer_space = NumberSpace(
    number=review.rating, min_value=1, max_value=5, mode=Mode.MAXIMUM
)
index = Index([review_text_space, rating_maximizer_space], fields=[review.rating])

# fill this with your API key - this will drive param extraction
openai_config = OpenAIClientConfig(
    api_key="YOUR_OPENAI_API_KEY", model="gpt-4o"
)

# it is possible now to add descriptions to a `Param` to aid the parsing of information from natural language queries.
text_similar_param = Param(
    "query_text",
    description="The text in the user's query that is used to search in the reviews' body. Extract info that does apply to other spaces or params.",
)

# Define your query using dynamic parameters for query text and weights.
# we will have our LLM fill them based on our natural language query
query = (
    Query(
        index,
        weights={
            review_text_space: Param("review_text_weight"),
            rating_maximizer_space: Param("rating_maximizer_weight"),
        },
    )
    .find(review)
    .similar(
        review_text_space,
        text_similar_param,
    )
    .limit(Param("limit"))
    .with_natural_query(Param("natural_query"), openai_config)
)

# Run the app.
source: InMemorySource = InMemorySource(review)
executor = InMemoryExecutor(sources=[source], indices=[index])
app = executor.run()

# Download dataset.
data = [
    {"id": 1, "review_text": "Useless product", "rating": 1},
    {"id": 2, "review_text": "Great product I am so happy!", "rating": 5},
    {"id": 3, "review_text": "Mediocre stuff fits the purpose", "rating": 3},
]

# Ingest data to the framework.
source.put(data)

result = app.query(query, natural_query="Show me the best product", limit=1)

# examine the extracted parameters from your query
print(json.dumps(result.knn_params, indent=2))
# the result is the 5 star rated product
result.to_pandas()

Run in production

Superlinked Server allows you to leverage the power of Superlinked in deployable projects. With a single script, you can deploy a Superlinked-powered app instance that creates REST endpoints and connects to external Vector Databases. This makes it an ideal solution for those seeking an easy-to-deploy environment for their Superlinked projects.

If your are interested in learning more about running at scale, Book a demo for an early access to our managed cloud.

Supported VDBs

We have started partnering with vector database providers to allow you to use Superlinked with your VDB of choice. If you are unsure, which VDB to chose, check-out our Vector DB Comparison.

Missing your favorite VDB? Tell us which vector database we should support next!

Reference

  1. Describe your data using Python classes with the @schema decorator.
  2. Describe your vector embeddings from building blocks with Spaces.
  3. Combine your embeddings into a queryable Index.
  4. Define your search with dynamic parameters and weights as a Query.
  5. Load your data using a Source.
  6. Define your transformations with a Parser (e.g.: from pd.DataFrame).
  7. Run your configuration with an Executor.

You can check all references here.

Logging

Contextual information is automatically included in log messages, such as the process ID and package scope. Personally Identifiable Information (PII) is filtered out by default but can be exposed with the SUPERLINKED_EXPOSE_PII environment variable to true.

Resources

  • Vector DB Comparison: Open-source collaborative comparison of vector databases by Superlinked.
  • Vector Hub: VectorHub is a free and open-sourced learning hub for people interested in adding vector retrieval to their ML stack

Support

If you encounter any challenges during your experiments, feel free to create an issue, request a feature or to start a discussion. Make sure to group your feedback in separate issues and discussions by topic. Thank you for your feedback!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

superlinked-12.17.1.tar.gz (171.4 kB view details)

Uploaded Source

Built Distribution

superlinked-12.17.1-py3-none-any.whl (419.1 kB view details)

Uploaded Python 3

File details

Details for the file superlinked-12.17.1.tar.gz.

File metadata

  • Download URL: superlinked-12.17.1.tar.gz
  • Upload date:
  • Size: 171.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for superlinked-12.17.1.tar.gz
Algorithm Hash digest
SHA256 f68aa236e3f883bbcfa69a69c005034c1db0e1e18dd5925c99bf48bf171d872a
MD5 10eec35b4be5f1d6a35cda91289d60b8
BLAKE2b-256 9783ca9a4c2066a9837a0295845b4a6ef1c82905cce47cb9aac1a9ae1c8d566d

See more details on using hashes here.

Provenance

The following attestation bundles were made for superlinked-12.17.1.tar.gz:

Publisher: python.yml on superlinked/superlinked-internal

Attestations:

File details

Details for the file superlinked-12.17.1-py3-none-any.whl.

File metadata

File hashes

Hashes for superlinked-12.17.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9aeb421a81d6b2b58efcb56fb9f0fa4f45e3592aca7d68f1753e56cd123b6778
MD5 e175045c691f86e0092b2e68a7fa1b31
BLAKE2b-256 af1d8e86d1b11b1118e8dd3351aa679160ee45676e509d78e703e460a3dfec3d

See more details on using hashes here.

Provenance

The following attestation bundles were made for superlinked-12.17.1-py3-none-any.whl:

Publisher: python.yml on superlinked/superlinked-internal

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page