No project description provided
Project description
📝 simple library to make life easy when deploying superpoint, superglue models
:gear: Installation
pip install superpoint_superglue_deployment
:tada: TODO
- interface to deploy superpoint, superglue
- testing on real data
:running: How to Run
Basic usage
import cv2
import numpy as np
from loguru import logger
from superpoint_superglue_deployment import Matcher
def main():
query_image = cv2.imread("./data/images/one_pillar_pagoda_1.jpg")
ref_image = cv2.imread("./data/images/one_pillar_pagoda_2.jpg")
query_gray = cv2.imread("./data/images/one_pillar_pagoda_1.jpg", 0)
ref_gray = cv2.imread("./data/images/one_pillar_pagoda_2.jpg", 0)
superglue_matcher = Matcher(
{
"superpoint": {
"input_shape": (-1, -1),
"keypoint_threshold": 0.003,
},
"superglue": {
"match_threshold": 0.5,
},
"use_gpu": True,
}
)
query_kpts, ref_kpts, _, _, matches = superglue_matcher.match(query_gray, ref_gray)
M, mask = cv2.findHomography(
np.float64([query_kpts[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2),
np.float64([ref_kpts[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2),
method=cv2.USAC_MAGSAC,
ransacReprojThreshold=5.0,
maxIters=10000,
confidence=0.95,
)
logger.info(f"number of inliers: {mask.sum()}")
matches = np.array(matches)[np.all(mask > 0, axis=1)]
matches = sorted(matches, key=lambda match: match.distance)
matched_image = cv2.drawMatches(
query_image,
query_kpts,
ref_image,
ref_kpts,
matches[:50],
None,
flags=2,
)
cv2.imwrite("matched_image.jpg", matched_image)
if __name__ == "__main__":
main()
-
Command line to test matching two images after installing the library
match_two_images --query_path [path/to/query/image] --ref_path [path/to/reference/image] --use_gpu
🎛 Development environment
mamba env create --file environment.yml
mamba activate superpoint_superglue_deployment
:gem: References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file superpoint_superglue_deployment-0.0.3.tar.gz
.
File metadata
- Download URL: superpoint_superglue_deployment-0.0.3.tar.gz
- Upload date:
- Size: 13.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6010b82194bba7a0701b73899842d1662db77526ad407f2daf376896ae9ba369 |
|
MD5 | 45a093e98a86b53b90cf117a636588f5 |
|
BLAKE2b-256 | e8e6f8a7dddc6188d18c14c90dcee306558d7670cbc38739522e8e844297f845 |
File details
Details for the file superpoint_superglue_deployment-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: superpoint_superglue_deployment-0.0.3-py3-none-any.whl
- Upload date:
- Size: 17.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aecef08b6374cbe270ed40adb77db9e4b9efe517b74483bc53cb782600b569d2 |
|
MD5 | 24ef6e97266ba7e708d4a10e31a2be95 |
|
BLAKE2b-256 | 0ca4c6b844c2ab211de96cb765b30eaff2f100e0e01e0e4f0bf62fb2206a18c4 |