Skip to main content

A set of easy-to-use utils that will come in handy in any Computer Vision project

Project description

👋 hello

We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝

💻 install

Pip install the supervision package in a 3.11>=Python>=3.7 environment.

pip install supervision
👉 install from source
# clone repository and navigate to root directory
git clone https://github.com/roboflow/supervision.git
cd supervision

# setup python environment and activate it
python3 -m venv venv
source venv/bin/activate

# install
pip install -e ".[dev]"

🔥 quickstart

detections processing

>>> import supervision as sv
>>> from ultralytics import YOLO

>>> model = YOLO('yolov8s.pt')
>>> result = model(IMAGE)[0]
>>> detections = sv.Detections.from_yolov8(result)

>>> len(detections)
5
👉 more detections utils
  • Easily switch inference pipeline between supported object detection / instance segmentation models

    >>> import supervision as sv
    >>> from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
    
    >>> sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH).to(device=DEVICE)
    >>> mask_generator = SamAutomaticMaskGenerator(sam)
    >>> sam_result = mask_generator.generate(IMAGE)
    >>> detections = sv.Detections.from_sam(sam_result=sam_result)
    
  • Advanced filtering

    >>> detections = detections[detections.class_id == 0]
    >>> detections = detections[detections.confidence > 0.5]
    >>> detections = detections[detections.area > 1000]
    
  • Image annotation

    >>> import supervision as sv
    
    >>> box_annotator = sv.BoxAnnotator()
    >>> annotated_frame = box_annotator.annotate(
    ...     scene=IMAGE,
    ...     detections=detections
    ... )
    

datasets processing

>>> import supervision as sv

>>> dataset = sv.DetectionDataset.from_yolo(
...     images_directory_path='...',
...     annotations_directory_path='...',
...     data_yaml_path='...'
... )

>>> dataset.classes
['dog', 'person']

>>> len(dataset)
1000
👉 more dataset utils
  • Load object detection / instance segmentation datasets in one of supported formats

    >>> dataset = sv.DetectionDataset.from_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... )
    
    >>> dataset = sv.DetectionDataset.from_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
  • Loop over dataset entries

    >>> for name, image, labels in dataset:
    ...     print(labels.xyxy)
    
    array([[404.      , 719.      , 538.      , 884.5     ],
           [155.      , 497.      , 404.      , 833.5     ],
           [ 20.154999, 347.825   , 416.125   , 915.895   ]], dtype=float32)
    
  • Split dataset for training, testing and validation

    >>> train_dataset, test_dataset = dataset.split(split_ratio=0.7)
    >>> test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5)
    
    >>> len(train_dataset), len(test_dataset), len(valid_dataset)
    (700, 150, 150)
    
  • Save object detection / instance segmentation datasets in one of supported formats

    >>> dataset.as_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... )
    
    >>> dataset.as_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
  • Convert labels between suppoted formats

    >>> sv.DetectionDataset.from_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... ).as_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
  • Load classification datasets in one of supported formats

    >>> cs = sv.ClassificationDataset.from_folder_structure(
    ...     root_directory_path='...'
    ... )
    
  • Save classification datasets in one of supported formats

    >>> cs.as_folder_structure(
    ...     root_directory_path='...'
    ... )
    

🎬 tutorials

Accelerate Image Annotation with SAM and Grounding DINO Accelerate Image Annotation with SAM and Grounding DINO

Created: 20 Apr 2023 | Updated: 20 Apr 2023

Discover how to speed up your image annotation process using Grounding DINO and Segment Anything Model (SAM). Learn how to convert object detection datasets into instance segmentation datasets, and see the potential of using these models to automatically annotate your datasets for real-time detectors like YOLOv8...


SAM - Segment Anything Model by Meta AI: Complete Guide SAM - Segment Anything Model by Meta AI: Complete Guide

Created: 11 Apr 2023 | Updated: 11 Apr 2023

Discover the incredible potential of Meta AI's Segment Anything Model (SAM)! We dive into SAM, an efficient and promptable model for image segmentation, which has revolutionized computer vision tasks. With over 1 billion masks on 11M licensed and privacy-respecting images, SAM's zero-shot performance is often competitive with or even superior to prior fully supervised results...

📚 documentation

Curious how Supervision can help you solve problems on your project? Visit our documentation page!

💜 built with supervision

You built something cool using supervision? Let us know!

🏆 contribution

We love your input! Please see our contributing guide to get started. Thank you 🙏 to all our contributors!


Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

supervision-0.10.0.tar.gz (41.2 kB view details)

Uploaded Source

Built Distribution

supervision-0.10.0-py3-none-any.whl (48.9 kB view details)

Uploaded Python 3

File details

Details for the file supervision-0.10.0.tar.gz.

File metadata

  • Download URL: supervision-0.10.0.tar.gz
  • Upload date:
  • Size: 41.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for supervision-0.10.0.tar.gz
Algorithm Hash digest
SHA256 3cbbff07d004411e5e2c22964f0690061124e991b5169e19486c0e893ca5f311
MD5 9f2e4db927de7b475b08c0c400d734c8
BLAKE2b-256 8335fc6da33a8a4fe84eacf33e63aa9ae1937a113559e97bba9ebfc02e9bfd63

See more details on using hashes here.

File details

Details for the file supervision-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: supervision-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 48.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for supervision-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4140369703727f4cc0830f73559de92885013516b6394db4dedf760c97ef724f
MD5 7ffad0a34169c31a6949310b67a7be82
BLAKE2b-256 5a04a4d3a361fea9549ce45d1dd7b6a61018eb237f07123eac8dcb37165def96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page