Skip to main content

A set of easy-to-use utils that will come in handy in any Computer Vision project

Project description

👋 hello

We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝

💻 install

Pip install the supervision package in a 3.11>=Python>=3.8 environment.

pip install supervision[desktop]

Read more about desktop, headless, and local installation in our guide.

🔥 quickstart

detections processing

>>> import supervision as sv
>>> from ultralytics import YOLO

>>> model = YOLO('yolov8s.pt')
>>> result = model(IMAGE)[0]
>>> detections = sv.Detections.from_yolov8(result)

>>> len(detections)
5
👉 more detections utils
  • Easily switch inference pipeline between supported object detection/instance segmentation models

    >>> import supervision as sv
    >>> from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
    
    >>> sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH).to(device=DEVICE)
    >>> mask_generator = SamAutomaticMaskGenerator(sam)
    >>> sam_result = mask_generator.generate(IMAGE)
    >>> detections = sv.Detections.from_sam(sam_result=sam_result)
    
  • Advanced filtering

    >>> detections = detections[detections.class_id == 0]
    >>> detections = detections[detections.confidence > 0.5]
    >>> detections = detections[detections.area > 1000]
    
  • Image annotation

    >>> import supervision as sv
    
    >>> box_annotator = sv.BoxAnnotator()
    >>> annotated_frame = box_annotator.annotate(
    ...     scene=IMAGE,
    ...     detections=detections
    ... )
    

datasets processing

>>> import supervision as sv

>>> dataset = sv.DetectionDataset.from_yolo(
...     images_directory_path='...',
...     annotations_directory_path='...',
...     data_yaml_path='...'
... )

>>> dataset.classes
['dog', 'person']

>>> len(dataset)
1000
👉 more dataset utils
  • Load object detection/instance segmentation datasets in one of the supported formats

    >>> dataset = sv.DetectionDataset.from_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... )
    
    >>> dataset = sv.DetectionDataset.from_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
    >>> dataset = sv.DetectionDataset.from_coco(
    ...     images_directory_path='...',
    ...     annotations_path='...'
    ... )
    
  • Loop over dataset entries

    >>> for name, image, labels in dataset:
    ...     print(labels.xyxy)
    
    array([[404.      , 719.      , 538.      , 884.5     ],
           [155.      , 497.      , 404.      , 833.5     ],
           [ 20.154999, 347.825   , 416.125   , 915.895   ]], dtype=float32)
    
  • Split dataset for training, testing, and validation

    >>> train_dataset, test_dataset = dataset.split(split_ratio=0.7)
    >>> test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5)
    
    >>> len(train_dataset), len(test_dataset), len(valid_dataset)
    (700, 150, 150)
    
  • Merge multiple datasets

    >>> ds_1 = sv.DetectionDataset(...)
    >>> len(ds_1)
    100
    >>> ds_1.classes
    ['dog', 'person']
    
    >>> ds_2 = sv.DetectionDataset(...)
    >>> len(ds_2)
    200
    >>> ds_2.classes
    ['cat']
    
    >>> ds_merged = sv.DetectionDataset.merge([ds_1, ds_2])
    >>> len(ds_merged)
    300
    >>> ds_merged.classes
    ['cat', 'dog', 'person']
    
  • Save object detection/instance segmentation datasets in one of the supported formats

    >>> dataset.as_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... )
    
    >>> dataset.as_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
    >>> dataset.as_coco(
    ...     images_directory_path='...',
    ...     annotations_path='...'
    ... )
    
  • Convert labels between supported formats

    >>> sv.DetectionDataset.from_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... ).as_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
  • Load classification datasets in one of the supported formats

    >>> cs = sv.ClassificationDataset.from_folder_structure(
    ...     root_directory_path='...'
    ... )
    
  • Save classification datasets in one of the supported formats

    >>> cs.as_folder_structure(
    ...     root_directory_path='...'
    ... )
    

model evaluation

>>> import supervision as sv

>>> dataset = sv.DetectionDataset.from_yolo(...)

>>> def callback(image: np.ndarray) -> sv.Detections:
...     ...

>>> confusion_matrix = sv.ConfusionMatrix.benchmark(
...     dataset = dataset,
...     callback = callback
... )

>>> confusion_matrix.matrix
array([
    [0., 0., 0., 0.],
    [0., 1., 0., 1.],
    [0., 1., 1., 0.],
    [1., 1., 0., 0.]
])
👉 more metrics
  • Mean average precision (mAP) for object detection tasks.

    >>> import supervision as sv
    
    >>> dataset = sv.DetectionDataset.from_yolo(...)
    
    >>> def callback(image: np.ndarray) -> sv.Detections:
    ...     ...
    
    >>> mean_average_precision = sv.MeanAveragePrecision.benchmark(
    ...     dataset = dataset,
    ...     callback = callback
    ... )
    
    >>> mean_average_precision.map50_95
    0.433 
    

🎬 tutorials

Accelerate Image Annotation with SAM and Grounding DINO Accelerate Image Annotation with SAM and Grounding DINO

Created: 20 Apr 2023 | Updated: 20 Apr 2023

Discover how to speed up your image annotation process using Grounding DINO and Segment Anything Model (SAM). Learn how to convert object detection datasets into instance segmentation datasets, and see the potential of using these models to automatically annotate your datasets for real-time detectors like YOLOv8...


SAM - Segment Anything Model by Meta AI: Complete Guide SAM - Segment Anything Model by Meta AI: Complete Guide

Created: 11 Apr 2023 | Updated: 11 Apr 2023

Discover the incredible potential of Meta AI's Segment Anything Model (SAM)! We dive into SAM, an efficient and promptable model for image segmentation, which has revolutionized computer vision tasks. With over 1 billion masks on 11M licensed and privacy-respecting images, SAM's zero-shot performance is often competitive with or even superior to prior fully supervised results...

📚 documentation

Visit our documentation page to learn how supervision can help you build computer vision applications faster and more reliably.

🏆 contribution

We love your input! Please see our contributing guide to get started. Thank you 🙏 to all our contributors!


Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

supervision-0.13.0rc3.tar.gz (50.3 kB view details)

Uploaded Source

Built Distribution

supervision-0.13.0rc3-py3-none-any.whl (59.3 kB view details)

Uploaded Python 3

File details

Details for the file supervision-0.13.0rc3.tar.gz.

File metadata

  • Download URL: supervision-0.13.0rc3.tar.gz
  • Upload date:
  • Size: 50.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for supervision-0.13.0rc3.tar.gz
Algorithm Hash digest
SHA256 3665b5c5235b0f4e97c03118d2207bb7d3f739c203dc0e9375ad4b4dacc2bf0b
MD5 85d55f86991ce2d7a2cde2b21daaf52e
BLAKE2b-256 5585f798d12a7c8d9e777ae5614632cbf566a054b04fb01ae1fd0fbe436574d4

See more details on using hashes here.

File details

Details for the file supervision-0.13.0rc3-py3-none-any.whl.

File metadata

File hashes

Hashes for supervision-0.13.0rc3-py3-none-any.whl
Algorithm Hash digest
SHA256 ed1516a44117970710d926308eed68404dabe409df7d73eef7df72efdff9d1c0
MD5 4cef0272a0e1c1d24e1d2ed220a662ed
BLAKE2b-256 4a5e33104865bd643d289318d14ff6dd12d41a5fac0219e2cf98c25e64ec5586

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page