Skip to main content

A set of easy-to-use utils that will come in handy in any Computer Vision project

Project description

👋 hello

We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝

supervision-hackfest

💻 install

Pip install the supervision package in a Python>=3.8 environment.

pip install supervision

Read more about conda, mamba, and installing from source in our guide.

🔥 quickstart

models

Supervision was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have created connectors for the most popular libraries like Ultralytics, Transformers, or MMDetection.

import cv2
import supervision as sv
from ultralytics import YOLO

image = cv2.imread(...)
model = YOLO('yolov8s.pt')
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)

len(detections)
# 5
👉 more model connectors
  • inference

    Running with Inference requires a Roboflow API KEY.

    import cv2
    import supervision as sv
    from inference import get_model
    
    image = cv2.imread(...)
    model = get_model(model_id="yolov8s-640", api_key=<ROBOFLOW API KEY>)
    result = model.infer(image)[0]
    detections = sv.Detections.from_inference(result)
    
    len(detections)
    # 5
    

annotators

Supervision offers a wide range of highly customizable annotators, allowing you to compose the perfect visualization for your use case.

import cv2
import supervision as sv

image = cv2.imread(...)
detections = sv.Detections(...)

bounding_box_annotator = sv.BoundingBoxAnnotator()
annotated_frame = bounding_box_annotator.annotate(
    scene=image.copy(),
    detections=detections
)

https://github.com/roboflow/supervision/assets/26109316/691e219c-0565-4403-9218-ab5644f39bce

datasets

Supervision provides a set of utils that allow you to load, split, merge, and save datasets in one of the supported formats.

import supervision as sv

dataset = sv.DetectionDataset.from_yolo(
    images_directory_path=...,
    annotations_directory_path=...,
    data_yaml_path=...
)

dataset.classes
['dog', 'person']

len(dataset)
# 1000
👉 more dataset utils
  • load

    dataset = sv.DetectionDataset.from_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    )
    
    dataset = sv.DetectionDataset.from_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )
    
    dataset = sv.DetectionDataset.from_coco(
        images_directory_path=...,
        annotations_path=...
    )
    
  • split

    train_dataset, test_dataset = dataset.split(split_ratio=0.7)
    test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5)
    
    len(train_dataset), len(test_dataset), len(valid_dataset)
    # (700, 150, 150)
    
  • merge

    ds_1 = sv.DetectionDataset(...)
    len(ds_1)
    # 100
    ds_1.classes
    # ['dog', 'person']
    
    ds_2 = sv.DetectionDataset(...)
    len(ds_2)
    # 200
    ds_2.classes
    # ['cat']
    
    ds_merged = sv.DetectionDataset.merge([ds_1, ds_2])
    len(ds_merged)
    # 300
    ds_merged.classes
    # ['cat', 'dog', 'person']
    
  • save

    dataset.as_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    )
    
    dataset.as_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )
    
    dataset.as_coco(
        images_directory_path=...,
        annotations_path=...
    )
    
  • convert

    sv.DetectionDataset.from_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    ).as_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )
    

🎬 tutorials

Want to learn how to use Supervision? Explore our how-to guides, end-to-end examples, and cookbooks!


Dwell Time Analysis with Computer Vision | Real-Time Stream Processing Dwell Time Analysis with Computer Vision | Real-Time Stream Processing

Created: 5 Apr 2024

Learn how to use computer vision to analyze wait times and optimize processes. This tutorial covers object detection, tracking, and calculating time spent in designated zones. Use these techniques to improve customer experience in retail, traffic management, or other scenarios.


Speed Estimation & Vehicle Tracking | Computer Vision | Open Source Speed Estimation & Vehicle Tracking | Computer Vision | Open Source

Created: 11 Jan 2024

Learn how to track and estimate the speed of vehicles using YOLO, ByteTrack, and Roboflow Inference. This comprehensive tutorial covers object detection, multi-object tracking, filtering detections, perspective transformation, speed estimation, visualization improvements, and more.

💜 built with supervision

Did you build something cool using supervision? Let us know!

https://user-images.githubusercontent.com/26109316/207858600-ee862b22-0353-440b-ad85-caa0c4777904.mp4

https://github.com/roboflow/supervision/assets/26109316/c9436828-9fbf-4c25-ae8c-60e9c81b3900

https://github.com/roboflow/supervision/assets/26109316/3ac6982f-4943-4108-9b7f-51787ef1a69f

📚 documentation

Visit our documentation page to learn how supervision can help you build computer vision applications faster and more reliably.

🏆 contribution

We love your input! Please see our contributing guide to get started. Thank you 🙏 to all our contributors!


Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

supervision-0.20.0.tar.gz (94.4 kB view details)

Uploaded Source

Built Distribution

supervision-0.20.0-py3-none-any.whl (111.0 kB view details)

Uploaded Python 3

File details

Details for the file supervision-0.20.0.tar.gz.

File metadata

  • Download URL: supervision-0.20.0.tar.gz
  • Upload date:
  • Size: 94.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for supervision-0.20.0.tar.gz
Algorithm Hash digest
SHA256 2e8ca93b5bf854e8f0e01813f8789dc76251267032f745de90654f2d900213c2
MD5 f4dffcb090683bb3d6fa54c72b376c1c
BLAKE2b-256 5a6010cb5bed70a1cc54c2d4686fb3262ffa3c3611be1ef118f6780cb386bbb1

See more details on using hashes here.

File details

Details for the file supervision-0.20.0-py3-none-any.whl.

File metadata

  • Download URL: supervision-0.20.0-py3-none-any.whl
  • Upload date:
  • Size: 111.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for supervision-0.20.0-py3-none-any.whl
Algorithm Hash digest
SHA256 58a91375b65fe05222ce1dc10a2c06095a6700b87bad5d8b52c333b90b330dff
MD5 0f39ffb7eac8c4731883ba453fc35e3b
BLAKE2b-256 501a971a415d67011854c2c59716c49b3de151d54b422c6dd0a6489e0152b42e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page