Skip to main content

A set of easy-to-use utils that will come in handy in any Computer Vision project

Project description

👋 hello

We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝

supervision-hackfest

💻 install

Pip install the supervision package in a Python>=3.8 environment.

pip install supervision

Read more about conda, mamba, and installing from source in our guide.

🔥 quickstart

models

Supervision was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have created connectors for the most popular libraries like Ultralytics, Transformers, or MMDetection.

import cv2
import supervision as sv
from ultralytics import YOLO

image = cv2.imread(...)
model = YOLO('yolov8s.pt')
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)

len(detections)
# 5
👉 more model connectors
  • inference

    Running with Inference requires a Roboflow API KEY.

    import cv2
    import supervision as sv
    from inference import get_model
    
    image = cv2.imread(...)
    model = get_model(model_id="yolov8s-640", api_key=<ROBOFLOW API KEY>)
    result = model.infer(image)[0]
    detections = sv.Detections.from_inference(result)
    
    len(detections)
    # 5
    

annotators

Supervision offers a wide range of highly customizable annotators, allowing you to compose the perfect visualization for your use case.

import cv2
import supervision as sv

image = cv2.imread(...)
detections = sv.Detections(...)

bounding_box_annotator = sv.BoundingBoxAnnotator()
annotated_frame = bounding_box_annotator.annotate(
    scene=image.copy(),
    detections=detections
)

https://github.com/roboflow/supervision/assets/26109316/691e219c-0565-4403-9218-ab5644f39bce

datasets

Supervision provides a set of utils that allow you to load, split, merge, and save datasets in one of the supported formats.

import supervision as sv

dataset = sv.DetectionDataset.from_yolo(
    images_directory_path=...,
    annotations_directory_path=...,
    data_yaml_path=...
)

dataset.classes
['dog', 'person']

len(dataset)
# 1000
👉 more dataset utils
  • load

    dataset = sv.DetectionDataset.from_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    )
    
    dataset = sv.DetectionDataset.from_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )
    
    dataset = sv.DetectionDataset.from_coco(
        images_directory_path=...,
        annotations_path=...
    )
    
  • split

    train_dataset, test_dataset = dataset.split(split_ratio=0.7)
    test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5)
    
    len(train_dataset), len(test_dataset), len(valid_dataset)
    # (700, 150, 150)
    
  • merge

    ds_1 = sv.DetectionDataset(...)
    len(ds_1)
    # 100
    ds_1.classes
    # ['dog', 'person']
    
    ds_2 = sv.DetectionDataset(...)
    len(ds_2)
    # 200
    ds_2.classes
    # ['cat']
    
    ds_merged = sv.DetectionDataset.merge([ds_1, ds_2])
    len(ds_merged)
    # 300
    ds_merged.classes
    # ['cat', 'dog', 'person']
    
  • save

    dataset.as_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    )
    
    dataset.as_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )
    
    dataset.as_coco(
        images_directory_path=...,
        annotations_path=...
    )
    
  • convert

    sv.DetectionDataset.from_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    ).as_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )
    

🎬 tutorials

Want to learn how to use Supervision? Explore our how-to guides, end-to-end examples, and cookbooks!


Dwell Time Analysis with Computer Vision | Real-Time Stream Processing Dwell Time Analysis with Computer Vision | Real-Time Stream Processing

Created: 5 Apr 2024

Learn how to use computer vision to analyze wait times and optimize processes. This tutorial covers object detection, tracking, and calculating time spent in designated zones. Use these techniques to improve customer experience in retail, traffic management, or other scenarios.


Speed Estimation & Vehicle Tracking | Computer Vision | Open Source Speed Estimation & Vehicle Tracking | Computer Vision | Open Source

Created: 11 Jan 2024

Learn how to track and estimate the speed of vehicles using YOLO, ByteTrack, and Roboflow Inference. This comprehensive tutorial covers object detection, multi-object tracking, filtering detections, perspective transformation, speed estimation, visualization improvements, and more.

💜 built with supervision

Did you build something cool using supervision? Let us know!

https://user-images.githubusercontent.com/26109316/207858600-ee862b22-0353-440b-ad85-caa0c4777904.mp4

https://github.com/roboflow/supervision/assets/26109316/c9436828-9fbf-4c25-ae8c-60e9c81b3900

https://github.com/roboflow/supervision/assets/26109316/3ac6982f-4943-4108-9b7f-51787ef1a69f

📚 documentation

Visit our documentation page to learn how supervision can help you build computer vision applications faster and more reliably.

🏆 contribution

We love your input! Please see our contributing guide to get started. Thank you 🙏 to all our contributors!


Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

supervision-0.21.0rc2.tar.gz (95.3 kB view details)

Uploaded Source

Built Distribution

supervision-0.21.0rc2-py3-none-any.whl (112.0 kB view details)

Uploaded Python 3

File details

Details for the file supervision-0.21.0rc2.tar.gz.

File metadata

  • Download URL: supervision-0.21.0rc2.tar.gz
  • Upload date:
  • Size: 95.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for supervision-0.21.0rc2.tar.gz
Algorithm Hash digest
SHA256 14224c5d16eb4922dc31fdaba12bf5269b88cbece297d9f71daf736eaf882de5
MD5 501a84674a8964da37caf5a66cd469ac
BLAKE2b-256 bbe582e72c3c711916c6c4483f6bbb92da7a55919ba44387f3dbef192660c795

See more details on using hashes here.

File details

Details for the file supervision-0.21.0rc2-py3-none-any.whl.

File metadata

File hashes

Hashes for supervision-0.21.0rc2-py3-none-any.whl
Algorithm Hash digest
SHA256 033f157a8c1a2b91a230033161851dc27fb1bb05211fb0402cbde502f27e4627
MD5 2a9c7b5daaf7e1f1ccd1b30ae10226a1
BLAKE2b-256 dceb20645325517a1d9eb4f66f7b3c72d5b6504795dc43fa741da1134082eb14

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page