Skip to main content

A toolkit to build GUI surfing AI agents

Project description


Surfkit

A toolkit for building AI agents that use devices
Explore the docs »

View Demo · Report Bug · Request Feature


Installation

pip install surfkit

Usage

Building Agents

Initialize a new project

surfkit new [NAME]

Build a docker container for the agent

surfkit build

Running Agents

Create an agent locally

surfkit create agent --name foo

Create an agent on kubernetes

surfkit create agent --runtime kube

List running agents

surfkit list agents

Get details about a specific agent

surfkit get agent --name foo

Fetch logs for a specific agent

surfkit logs --name foo

Delete an agent

surfkit delete agent --name foo

Managing Devices

Create a device

surfkit create device --type desktop --provicer gce --name bar

List devices

surfkit list devices

View device in UI

surfkit view --name bar

Delete a device

surfkit delete device --name bar

Solving Tasks

Solve a task with an existing setup

surfkit solve --description "search for common french ducks" --agent foo --device bar

Solve a task creating the agent ad hoc

surfkit solve --description "search for alpaca sweaters" \
--device bar --agent-file ./agent.yaml

Solve a task and kill the agent post-execution

surfkit solve --description "search for the meaning of life" \
--device bar --agent-file ./agent.yaml --kill

List tasks

surfkit list tasks

Publishing Agents

Login to the hub

surfkit login

Publish the agent

surfkit publish

List published agent types

surfkit list types

Run a published agent

surfkit create agent --type SurfPizza --runtime kube

Developing

Add the following function to your ~/.zshrc (or similar)

function sk() {
    local project_dir="/path/to/surfkit/repo"
    local venv_dir="$project_dir/.venv"

    local ssh_auth_sock="$SSH_AUTH_SOCK"
    local ssh_agent_pid="$SSH_AGENT_PID"

    source "$venv_dir/bin/activate"

    export SSH_AUTH_SOCK="$ssh_auth_sock"
    export SSH_AGENT_PID="$ssh_agent_pid"

    python -m surfkit.cli.main "$@"
    deactivate
}

Replacing /path/to/surfkit/repo with the absolute path to your local repo.

Then calling sk will execute the working code in your repo from any location.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

surfkit-0.1.153.tar.gz (52.0 kB view details)

Uploaded Source

Built Distribution

surfkit-0.1.153-py3-none-any.whl (64.7 kB view details)

Uploaded Python 3

File details

Details for the file surfkit-0.1.153.tar.gz.

File metadata

  • Download URL: surfkit-0.1.153.tar.gz
  • Upload date:
  • Size: 52.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for surfkit-0.1.153.tar.gz
Algorithm Hash digest
SHA256 e335ef8278dc2e5c3ef96c8b019d9c95f75ae904a31002383a62b0ab80a0d813
MD5 b8d628afe8f33e8b0253ebe20fe95ba6
BLAKE2b-256 8173e0e81d0aa5d42eb2794a7dbdb7666d2a32fd67a3199c448c4c84c84d8a8c

See more details on using hashes here.

File details

Details for the file surfkit-0.1.153-py3-none-any.whl.

File metadata

  • Download URL: surfkit-0.1.153-py3-none-any.whl
  • Upload date:
  • Size: 64.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for surfkit-0.1.153-py3-none-any.whl
Algorithm Hash digest
SHA256 deca72805318bf9053de5d4f6986138c31e95bf4faeb2d849b2343a9d1ca776e
MD5 30bd4aef002e947f1ba7a9b5811b8d76
BLAKE2b-256 616c1bfa1da9d53c325e75f3a0a8a484c97ffadcefab6033b9e3c952045c4593

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page