A training helper for LLM.
Project description
Using Singular Value Decomposition (SVD) to reduce the dimensionality of the trainable parameters in a neural network
Introduction
TBD
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from svd_training.svd_model import SVDForCausalLM
filename = "mistralai/Mistral-7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(filename)
model = AutoModelForCausalLM.from_pretrained(filename)
svd_model = SVDForCausalLM.create_from_model(model, rank_fraction=0.1) # Create the SVD model
### Train the model using your favourite training loop
...
###
svd_model.merge() # Merge the SVD layers back into the model
svd_model.save_pretrained("svd_model/") # Save the model
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file svd_training-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: svd_training-0.0.2-py3-none-any.whl
- Upload date:
- Size: 8.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.10.0 requests/2.31.0 setuptools/52.0.0 requests-toolbelt/1.0.0 tqdm/4.64.1 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7263cf8aeda532678dd8e84ab57559033601e097e6c33b498c3c767952af7d1 |
|
MD5 | fb9939afcbd937241867ad4e10feec4b |
|
BLAKE2b-256 | 31b4d3d8bfa97c90704db405d5bcc418d1b8986283ca50af86a7451378bac9d9 |