No project description provided
Project description
Installation
Install svgbit with pip:
pip install svgbit
Command-line Interface
svgbit has a command line version. Just tape:
svgbit --help
after installation, and you may get a short help massage:
usage: svgbit [-h] [--k K] [--n_svgs N_SVGS] [--n_svg_clusters N_SVG_CLUSTERS] [--he_image HE_IMAGE] [--savedir SAVEDIR] [--cores CORES] read_dir Find spatial variable genes for Spatial Trasncriptomics data. positional arguments: read_dir a location points to 10X outs dir. Assume directories ``filtered_feature_bc_matrix`` and ``spatial`` are in this path. optional arguments: -h, --help show this help message and exit --k K number of nearest neighbors for KNN network (default: 6) --n_svgs N_SVGS number of SVGs to find clusters (default: 1000) --n_svg_clusters N_SVG_CLUSTERS number of SVG clusters to find (default: 8) --he_image HE_IMAGE path to H&E image. Only used for visualization (default: None) --savedir SAVEDIR path to save results (default: .) --cores CORES number of threads to run svgbit (default: 8)
Follow the introduction and results will save to –savedir.
Python Interface
svgbit has a set of python API. You may run svgbit through command line or python. We recommend the usage of python API for more feature and convient control of your input data.
Run svgbit with one function
svgbit could load data from Space Ranger output directory:
import svgbit dataset = svgbit.load_10X("spaceranger_output/outs")
Or load data from csv files:
import svgbit dataset = svgbit.STDataset( count_df="Data/count_df.csv", coordinate_df="Data/coor_df.csv", count_df_kwargs={"index_col": 0, "header": 0}, coordinate_df_kwargs={"index_col": 0, "header": 0}, )
After data loading, run:
svgbit.run(dataset)
to perform full pipeline of svgbit. Results will save as attributes of dataset.
Visit our API references for further detail.
Visualization
Draw SVG heatmap with:
svgbit.svg_heatmap(dataset, save_path="heatmap.jpg", he_image="he_image.jpg")
Parameter he_image is optional. If not specified, hotspot discription map will show without morphological information.
Details about svgbit.run()
When you perform svgbit.run(), sevaral steps will be done as below. For further detail of calculation, please refer to our publication.
Acquire weight
To calculate hotspot matrix, svgbit needs a weight network which discribes association across spots. svgbit uses k-nearest neighbors with 6 neighbors as a default. You may pass key word argument k to svgbit.run() to change this behavior.
In this step, svgbit.run() will execute STDataset.acquire_weight() method with given parameters. You may also perform this step by:
dataset.acquire_weight()
Weight will save as attribute weight of STDataset and detailed discription of weight is saved to weight_type attribute. Users may provide a libpysal.weights.W instance as user-specified weight:
dataset.weight = user_specified_weight
Acquire hotspot
Hotspot matrix is estimated by:
dataset.acquire_hotspot()
and save to hotspot_df attribute.
Density
AI and Di value discribed in our paper will be calculate by:
dataset.acquire_density()
and save to AI and Di attribute as pd.Series.
Find SVG clusters
SVG clusters is estimated by:
dataset.find_clusters()
and save to svg_cluster attribute.
For further discription of hotspot, AI, Di and SVG cluster, please refer to our manuscript.
Citation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.