Skip to main content

The official Python library for SweatStack

Project description

SweatStack Python Library

Overview

This is the Python library for Sweat Stack. Sweat Stack is a powerfull application designed for athletes, coaches, and sports scientists to analyze and manage athletic performance data. This library provides a seamless interface to interact with the SweatStack API, allowing users to retrieve, analyze, and visualize activity data and performance metrics.

Installation

We recommend using uv to manage Python and install the library. Read more about uv here.

uv pip install sweatstack

You can also install it with pip (or pipx) directly.

pip install sweatstack

Quickstart

Get started with analyzing your latest activity:

import sweatstack as ss

ss.login()

latest_activity = ss.get_latest_activity()

print(latest_activity)  # `latest_activity` is a pandas DataFrame

Authentication

To be able to access your data in Sweat Stack, you need to authenticate the library with your Sweat Stack account. The easiest way to do this is to use your browser to login:

import sweatstack as ss

ss.login()

This will automaticallyset the appropriate authentication tokens in your Python code.

Alternatively, you can set the SWEAT_STACK_API_KEY environment variable to your API key. You can create an API key here.

import os

import sweatstack as ss

os.environ["SWEAT_STACK_API_KEY"] = "your_api_key_here"

# Now you can use the library

Listing activities

To list activities, you can use the list_activities() function:

for activity in ss.list_activities():
    print(activity)

Info: This method returns a summary of the activities, not the actual timeseries data. To get the actual data, you need to use the get_activity_data() or get_latest_activity_data()) methods documented below.

Getting activity summaries

To get the summary of an activity, you can use the get_activity() function:

activity = ss.get_activity(activity_id)
print(activity)

To quickly the latest activity, you can use the get_latest_activity() function:

activity = ss.get_latest_activity()
print(activity)

Getting activity data

To get the timeseries data of one activity, you can use the get_activity_data() method:

data = ss.get_activity_data(activity_id)
print(data)

This method returns a pandas DataFrame. If your are not familiar with pandas and/or DataFrames, start by reading this introduction.

Similar as for the summaries, you can use the get_latest_activity_data() method to get the timeseries data of the latest activity:

data = ss.get_latest_activity_data()
print(data)

To get the timeseries data of multiple activities, you can use the get_longitudinal_data() method:

longitudinal_data = ss.get_longitudinal_data(
    start=date.today() - timedelta(days=180),
    sport="running",
    metrics=["power", "heart_rate"],
)
print(longitudinal_data)

Because the result of get_longitudinal_data() can be very large, the data is retrieved in a compressed format (parquet) that requires the pyarrow library to be installed. If you intend to use this method, make sure to install the sweatstack libraryr with uv pip install sweatstack[parquet]. Also note that depending on the amount of data that you requested, this might take a while.

Accessing other user's data

By default, the library will give you access to your own data.

You can list all users you have access to with the list_accessible_users() method:

for user in ss.list_accessible_users():
    print(user)

You can switch to another user by using the switch_user() method:

ss.switch_user(user)

Calling any of the methods above will return the data for the user you switched to.

You can easily switch back to your original user by calling the switch_to_root_user() method:

ss.switch_to_root_user()

Metrics

The API supports the following metrics:

  • power: Power in Watt
  • speed: Speed in m/s
  • heart_rate: Heart rate in BPM
  • smo2: Muscle oxygen saturation in %
  • core_temperature: Core body temperature in °C
  • altitude: Altitude in meters
  • cadence: Cadence in RPM
  • temperature: Ambient temperature in °C
  • distance: Distance in m
  • longitude: Longitude in degrees
  • latitude: Latitude in degrees

Sports

The API supports the following sports:

  • running: Running
  • cycling: Cycling

More sports will be added in the future.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sweatstack-0.1.3.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

sweatstack-0.1.3-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file sweatstack-0.1.3.tar.gz.

File metadata

  • Download URL: sweatstack-0.1.3.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for sweatstack-0.1.3.tar.gz
Algorithm Hash digest
SHA256 4964d377a12c711e875862462ca1ec1196dbd605be3fcab4a2e883e67ec009a0
MD5 532851e61dcc39becf92b9d5b0e74c90
BLAKE2b-256 fcebd80d374b0acc009fbd9186dd372062071ea49c4c248de0478a26ac6326e7

See more details on using hashes here.

File details

Details for the file sweatstack-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: sweatstack-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for sweatstack-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ca0e153a79528bfc529fb196e09982499e1f34f685b7163b5d30eeede29c3ded
MD5 8d6a617a45af8cd6def3b0986ac92676
BLAKE2b-256 d6b7458bd510e50de3094f7208b2b58ca8822ad9ecda70685cc0ab80607d6e92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page