Skip to main content

Tools for running a SWE agent using Composio platform

Project description

Composio logo Composio Logo

PyPI NPM Downloads

Production Ready Toolset for AI Agents

Build Software engineering Agents fast and easy!


✨ Socials >> Discord | Youtube | Twitter | Linkedin

⛏️ Contribute >> Report Bugs | Request Feature | Contribute

📋 Table of contents

Table of Contents

Overview

swekit is a framework for building SWE agents on by utilising composio tooling ecosystem. SWE Kit allows you to

  • Scaffold agents which works out-of-the-box with choice of your agentic framework, crewai, llamaindex, etc...
  • Tools to add or optimise your agent's abilities
  • Benchmark your agents against SWE-bench

Dependencies

Before getting started, ensure you have the following set up:

  1. Installation:

    pip install swekit composio-core
    
  2. Install agentic framework of your choice and the Composio plugin for the same: Here we're using crewai for the example:

    pip install crewai composio-crewai
    
  3. GitHub Access Token:

    The agent requires a github access token to work with your repositories, You can create one at https://github.com/settings/tokens with necessary permissions and export it as an environment variable using export GITHUB_ACCESS_TOKEN=<your_token>

  4. LLM Configuration: You also need to setup API key for the LLM provider you're planning to use. By default the agents scaffolded by swekit uses openai client, so export OPENAI_API_KEY before running your agent

Getting Started

Creating a new agent

  1. Scaffold your agent using:

    swekit scaffold <type> -f <framework> -o <path>
    
    • <type> can be swe or pr_review depending on the use-case
    • <framework> can be crewai or langgraph. Support for more frameworks coming soon!

    This creates a new agent in <path>/agent with four key files:

    • main.py: Entry point to run the agent on your issue
    • agent.py: Agent definition (edit this to customise behaviour)
    • prompts.py: Agent prompts
    • benchmark.py: SWE-Bench benchmark runner
  2. Run the agent:

    cd agent
    python main.py
    

    You'll be prompted for the repository name and issue.

Workspace Environment

The SWE-agent runs in Docker by default for security and isolation. This sandboxes the agent's operations, protecting against unintended consequences of arbitrary code execution.

The composio toolset has support for different types of workspaces.

  1. Host - This will run on the host machine.
from composio import ComposioToolSet, WorkspaceType

toolset = ComposioToolSet(
    workspace_config=WorkspaceType.Host()
)
  1. Docker - This will run inside a docker container
from composio import ComposioToolSet, WorkspaceType

toolset = ComposioToolSet(
    workspace_config=WorkspaceType.Docker()
)

On the docker container you can configure and expose the port for development as per your requirements. You can also use workspace.as_prompt() method to generate a workspace description for setting up your agent.

from composio import ComposioToolSet, WorkspaceType

toolset = ComposioToolSet(
    workspace_config=WorkspaceType.Docker(
        ports={
            8001: 8001,
        }
    )
)

You can read more about configuring docker ports here.

  1. E2B - This will run inside a E2B Sandbox
from composio import ComposioToolSet, WorkspaceType

toolset = ComposioToolSet(
    workspace_config=WorkspaceType.E2B(),
)
  1. FlyIO - This will run inside a FlyIO machine
from composio import ComposioToolSet, WorkspaceType

toolset = ComposioToolSet(
    workspace_config=WorkspaceType.FlyIO(),
)

FlyIO also allows for configuring ports for development/deployment.

from composio import ComposioToolSet, WorkspaceType

composio_toolset = ComposioToolSet(
    workspace_config=WorkspaceType.FlyIO(
        image="composio/composio",
        ports=[
            {
                "ports": [
                    {"port": 443, "handlers": ["tls", "http"]},
                ],
                "internal_port": 80,
                "protocol": "tcp",
            }
        ],
    )
)

You can read more abour configuring network ports on flyio machine here

Customising the workspace environment

The workspace environment contains following environment variables by default

  • COMPOSIO_API_KEY: The composio API key for interacting with composio API.
  • COMPOSIO_BASE_URL: Base URL for composio API server.
  • GITHUB_ACCESS_TOKEN: Github access token for the agent.
  • ACCESS_TOKEN: Access token for composio tooling server.

If you want to provide additional environment configuration you can use environment argument when creating a workspace configuration.

composio_toolset = ComposioToolSet(
    workspace_config=WorkspaceType.Docker(
        environment={
            "SOME_API_TOKEN": "<SOME_API_TOKEN>",
        }
    )
)

Running the Benchmark

SWE-Bench is a comprehensive benchmark designed to evaluate the performance of software engineering agents. It comprises a diverse collection of real-world issues from popular Python open-source projects, providing a robust testing environment.

To run the benchmark:

  1. Ensure Docker is installed and running on your system.
  2. Execute the following command:
    cd agent
    python benchmark.py --test-split=<test_split>
    
    • By default, python benchmark.py runs only 1 test instance.
    • Specify a test split ratio to run more tests, e.g., --test-split=1:300 runs 300 tests.

To run the benchmarks in E2B or FlyIO sandbox, you can set the workspace_env in the evaluate function call in benchmark.py

from composio import WorkspaceType

(...)

    evaluate(
        bench,
        dry_run=False,
        test_range=test_range,
        test_instance_ids=test_instance_ids_list,
        workspace_env=WorkspaceType.E2B
    )

To use E2B or FlyIO sandboxes you'll require API key for respective platforms, to use E2B export your API key as E2B_API_KEY and to use FlyIO export your API token as FLY_API_TOKEN.

Note: We utilize SWE-Bench-Docker to ensure each test instance runs in an isolated container with its specific environment and Python version.

To extend the functionality of the SWE agent by adding new tools or extending existing ones, refer to the Development Guide.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

swekit-0.2.38.tar.gz (78.8 kB view details)

Uploaded Source

Built Distribution

swekit-0.2.38-py3-none-any.whl (106.3 kB view details)

Uploaded Python 3

File details

Details for the file swekit-0.2.38.tar.gz.

File metadata

  • Download URL: swekit-0.2.38.tar.gz
  • Upload date:
  • Size: 78.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for swekit-0.2.38.tar.gz
Algorithm Hash digest
SHA256 5cd04d48cba4add5d039d3c12c3057224ee3321d0f2da891a470d7cc6df2dba7
MD5 4bb4dacd0486489603717606e3b3a9c2
BLAKE2b-256 6ede0d4553fd4c7542663d86fbf6e2291baad3119483be468a146b41d34760b8

See more details on using hashes here.

File details

Details for the file swekit-0.2.38-py3-none-any.whl.

File metadata

  • Download URL: swekit-0.2.38-py3-none-any.whl
  • Upload date:
  • Size: 106.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for swekit-0.2.38-py3-none-any.whl
Algorithm Hash digest
SHA256 e34c5c504b0a72ce4999115f52b037ddb37ddf3d2c2107cf37c88c1e92039b55
MD5 987e940ab324b041087c2b35b5af554a
BLAKE2b-256 0250fd80ad9c7c648a28dc39b377bbb2426e590f13b077d39fcb0dfde1826786

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page